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Second-order co-occurrence

First-order co-occurrence vectors
represent a word w by a vector of the counts of context words it

directly co-occurs with

Second-order co-occurrence vectors (Schiitze, 1998)

represent a word w by a count vector of the context words of
the context words, i.e., the second-order context words of w



Second-order co-occurrence vectors (Schiitze, 1998)

» less sparse and more robust than first-order vectors
> helpful where first-order information is a rare or biased

» can be seen as a way of generalization



Example

(1) As far as the Soviet Communist Party and the Comintern
were concerned . ..

(2) ...this is precisely the approach taken by the
Government.

(3) The Communist authorities hated rock culture . . .

(4) ...rather than risk deportation to authorities.



Second-order co-occurrence vectors (Schiitze, 1998)

» less sparse, more robust, generalization

— capturing second-order information improves performance



Vector Space Models

Traditional Count
X Count, PPMI do not capture second-order co-occurrence
information, but can be modified to do so (V)

Traditional Embeddings

Truncated SVD does capture second-order co-occurrence
information (Kontostathis & Pottenger, 2002)

Modern Embeddings
SGNS, GloVe, FastText



We compare

X Positive Pointwise Mutual Information (PPMI)

Truncated Singular Value Decomposition (SVD)
Skip-Gram with Negative Sampling (SGNS)



PPMI

Pointwise Mutual Information

p(w, c)

pmi(w; c) =log PWIp(c)



Truncated SVD

MPPMI —Ux VT
MYP =Uy% 4



SGNS

Training objective

arg max Z logo(ve - viy) + Z log o(—ve - viy)

(w,c)eD (w,c)eD’
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Experiment 1: Simulating context overlap

1. first-order overlap (1st):
same context words in first, # distinct context words in second
order
2. 2nd-order overlap (2nd):
= distinct context words in first, = same context words in second
order
3. no overlap (none):

= distinct context words in first, # distinct context words in second
order



Experiment 1: Simulating first/second-order context
overlap

order | 1st 2nd none
ac ac ac

C1 bc be be
bd ©bf bf
cu cu cu

2 cCVv cCcv cv

dw du dw




Experiment 1: Simulating context overlap

Hypothesis

SGNS and SVD will predict target words from the 2nd-group to
be more similar on average than target words from the
none-group (although both groups have no first-order context
overlap), while PPMI will predict similar averages for both groups.
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Experiment 2: Propagating second-order co-occurrence
information

N

create very small corpus (10M tokens from ukWaC)
extract first-and second-order word-context pairs
add second to first-order pairs for low-frequency words

compare performance (WordSim353) on first-order vs. mixed
training pairs



Experiment 2: Propagating second-order co-occurrence
information

Hypothesis

Additional second-order information will impact PPMI
representations positively and stronger than SVD and SGNS,
because the latter already capture second-order information.
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Explanation: SGNS

Banana
W = Watermelon



SGNS

W = Watermelon -3 2 1



SGNS

Banana

W—



SGNS

W = Watermelon -2 2 1 C
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Banana
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SGNS

W = Watermelon -1 1 1 C



SGNS

Banana 1

W—



SGNS

Party 1 -2 3
Government 3 2 -1 .
W = C=Communist -1 2 3
British 3 2 -1
authorities 2 -3 1



SGNS

Party 1 -2 3
Government 3 2 -1
W = ... C

British 3 2 -1



SGNS

Party 1 -2 3
Government 3 2 -1 ...
W = C=Communist 0 1 2



SGNS

Party 1 -2 3
Government 3 2 -1
W = .. C

British 2 11



SGNS

Party 1 -2 3
Government 3 2 -1 ...
W = C=Communist 1 0 2



SGNS

Government 3 2 -1
W = C

British 1 0
authorities 1 0 1



SGNS

W = C=Communist 1 -1 2

authorities 1 0 1



SGNS
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SGNS

Party 1 -1 2
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W = C=Communist 1 0 1
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Relation between SVD and SGNS

» show similar results (Levy et al., 2015)

» their training objectives have been related to each other (Levy
& Goldberg, 2014)

» their correspondence in the low-dimensional case has not been
shown yet

— if SGNS is implicit SVD, it should be second-order
co-occurrence sensitive



Does this show that SGNS is implicit SVD?

> no
> it just shows that in the low-dimensional case they share one
fundamental property

> there is evidence that vector spaces learned by
low-dimensional SGNS and SVD have other different
properties (Shin et al., 2018)



Conclusion

» SGNS captures second-order co-occurrence information, a
property it shares with SVD and distinguishes it from PPMI

> variety of algorithms with SGNS architecture
» SGNS became the “traditional model” this year
» so, what about GloVe, ELMo, BERT?

» how does second-order sensitivity relate to performance?
(Artetxe, Labaka, Lopez-Gazpio, & Agirre, 2018)
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Figure 1: Results of simulation experiment with GloVe embeddings.
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