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Second-order co-occurrence

First-order co-occurrence vectors
represent a word w by a vector of the counts of context words it
directly co-occurs with

Second-order co-occurrence vectors (Schütze, 1998)

represent a word w by a count vector of the context words of
the context words, i.e., the second-order context words of w
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Second-order co-occurrence vectors (Schütze, 1998)

I less sparse and more robust than first-order vectors

I helpful where first-order information is a rare or biased

I can be seen as a way of generalization
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Example

(1) As far as the Soviet Communist Party and the Comintern
were concerned . . .

(2) . . . this is precisely the approach taken by the British
Government.

(3) The Communist authorities hated rock culture . . .

(4) . . . rather than risk deportation to British authorities.
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Second-order co-occurrence vectors (Schütze, 1998)

I less sparse, more robust, generalization

→ capturing second-order information improves performance
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Vector Space Models

Traditional Count
8 Count, PPMI do not capture second-order co-occurrence
information, but can be modified to do so (3)

Traditional Embeddings

3 Truncated SVD does capture second-order co-occurrence
information (Kontostathis & Pottenger, 2002)

Modern Embeddings

? SGNS, GloVe, FastText
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We compare

8 Positive Pointwise Mutual Information (PPMI)

3 Truncated Singular Value Decomposition (SVD)

? Skip-Gram with Negative Sampling (SGNS)
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PPMI

Pointwise Mutual Information

pmi(w ; c) = log
p(w , c)

p(w)p(c)
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Truncated SVD

MPPMI =UΣV>

MSVD =UdΣd
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SGNS

Training objective

arg max
θ

∑
(w ,c)∈D

log σ(vc · vw ) +
∑

(w ,c)∈D′

log σ(−vc · vw )
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Training

a c
c a
c b
b c
b d
d e

Training pairs
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Experiment 1: Simulating context overlap

1. first-order overlap (1st):
= same context words in first, 6= distinct context words in second
order

2. 2nd-order overlap (2nd):
6= distinct context words in first, = same context words in second
order

3. no overlap (none):
6= distinct context words in first, 6= distinct context words in second

order
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Experiment 1: Simulating first/second-order context
overlap

order 1st 2nd none

C1
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b c
b d

a c
a d
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b e
b f

C2
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c u
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Experiment 1: Simulating context overlap

Hypothesis

SGNS and SVD will predict target words from the 2nd-group to
be more similar on average than target words from the
none-group (although both groups have no first-order context
overlap), while PPMI will predict similar averages for both groups.
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Results
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Experiment 2: Propagating second-order co-occurrence
information

1. create very small corpus (10M tokens from ukWaC)

2. extract first-and second-order word-context pairs

3. add second to first-order pairs for low-frequency words

4. compare performance (WordSim353) on first-order vs. mixed
training pairs
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Experiment 2: Propagating second-order co-occurrence
information

Hypothesis

Additional second-order information will impact PPMI
representations positively and stronger than SVD and SGNS,
because the latter already capture second-order information.
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Results
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Explanation: SGNS

W =
Banana 1 −2 3

Watermelon −3 2 1
. . .

C =
. . .
. . .
eat 2 3 −1
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SGNS

W =
Banana 2 −1 2

Watermelon −3 2 1
. . .

C =
. . .
. . .
eat 2 2 0
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SGNS

W =
Banana 2 −1 2

Watermelon −2 2 1
. . .

C =
. . .
. . .
eat 1 2 1
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SGNS

W =
Banana 1 0 1

Watermelon −2 2 1
. . .

C =
. . .
. . .
eat 1 1 1
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SGNS

W =
Banana 1 0 1

Watermelon −1 1 1
. . .

C =
. . .
. . .
eat 1 1 1
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SGNS

W =
Banana 1 1 1

Watermelon −1 1 1
. . .

C =
. . .
. . .
eat 1 1 1
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SGNS

W =
Banana 1 1 1

Watermelon 0 1 1
. . .

C =
. . .
. . .
eat 1 1 1
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SGNS

W =

Party 1 −2 3
Government 3 2 −1

. . .

. . .
authorities 2 −3 1

C =

. . .

. . .
Communist −1 2 3

British 3 2 −1
. . .
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SGNS

W =

Party 1 −2 3
Government 3 2 −1

. . .

. . .
authorities 1 −2 2

C =

. . .

. . .
Communist 0 1 2

British 3 2 −1
. . .
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SGNS

W =

Party 1 −2 3
Government 3 2 −1

. . .

. . .
authorities 2 −1 1

C =

. . .

. . .
Communist 0 1 2

British 2 1 0
. . .
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SGNS

W =

Party 1 −2 3
Government 3 2 −1

. . .

. . .
authorities 1 0 1

C =

. . .

. . .
Communist 1 0 2

British 2 1 1
. . .
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SGNS

W =

Party 1 −2 3
Government 3 2 −1

. . .

. . .
authorities 1 0 1

C =

. . .

. . .
Communist 1 0 2

British 1 0 1
. . .
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SGNS

W =

Party 1 −1 2
Government 3 2 −1

. . .

. . .
authorities 1 0 1

C =

. . .

. . .
Communist 1 −1 2

British 1 0 1
. . .
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SGNS

W =

Party 1 −1 2
Government 2 1 0

. . .

. . .
authorities 1 0 1

C =

. . .

. . .
Communist 1 −1 2

British 2 1 0
. . .
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SGNS

W =

Party 1 −1 2
Government 2 1 0

. . .

. . .
authorities 1 0 1

C =

. . .

. . .
Communist 1 0 1

British 2 1 0
. . .
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SGNS

W =

Party 1 −1 2
Government 2 1 0

. . .

. . .
authorities 1 0 1

C =

. . .

. . .
Communist 1 0 1

British 1 0 1
. . .
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SGNS

W =

Party 1 0 1
Government 2 1 0

. . .

. . .
authorities 1 0 1

C =

. . .

. . .
Communist 1 0 1

British 1 0 1
. . .
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SGNS

W =

Party 1 0 1
Government 1 1 1

. . .

. . .
authorities 1 0 1

C =

. . .

. . .
Communist 1 0 1

British 1 1 1
. . .
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Relation between SVD and SGNS

I show similar results (Levy et al., 2015)

I their training objectives have been related to each other (Levy
& Goldberg, 2014)

I their correspondence in the low-dimensional case has not been
shown yet

→ if SGNS is implicit SVD, it should be second-order
co-occurrence sensitive
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Does this show that SGNS is implicit SVD?

I no

I it just shows that in the low-dimensional case they share one
fundamental property

I there is evidence that vector spaces learned by
low-dimensional SGNS and SVD have other different
properties (Shin et al., 2018)
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Conclusion

I SGNS captures second-order co-occurrence information, a
property it shares with SVD and distinguishes it from PPMI

I variety of algorithms with SGNS architecture

I SGNS became the “traditional model” this year

I so, what about GloVe, ELMo, BERT?

I how does second-order sensitivity relate to performance?
(Artetxe, Labaka, Lopez-Gazpio, & Agirre, 2018)
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Results GloVe

Figure 1: Results of simulation experiment with GloVe embeddings.


	Bibliography

