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What is Kiezdeutsch?

Definition
German-language variety spoken primarily by teenagers from
multi-ethnic urban neighborhoods in casual conversations with

their peers.
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What is Kiezdeutsch?

> A way of self-identification.

Figure: German rappers Eko Fresh and Ali Bumaye sing

“Lan lass ma’ ya!” (Dude, let’s go!). Source: YouTube.com
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» Part of bigger phenomenon ‘Urban Youth Languages'.
Other examples: Multicultural London English (UK),
straattaal (Netherlands), Rinkebysvenska (Sweden), Isamto
(Africa)

> A dialect in its own standing - Heike Wiese
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[ leJele]

Syntactic Phenomena in Kiezdeutsch 1

» bare NPs: Noun phrases (NPs) lacking determiners and/or
prepositions.

(1) Konnen wir Party machen?
Can we party make?

‘Can we have [a] party?’

Standard German: Koénnen wir eine Party machen?
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Syntactic Phenomena in Kiezdeutsch 2

» Directive Particles: New particles “Lassma”, “mussttu” at
start of sentence.

(2) Lass mal morgen saufen gehen SPKI19.
let once tomorrow drinking go SPK19.

‘Let’s go drinking tomorrow SPK19!
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» V1: Verb-first (V1) declaratives.
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Syntactic Phenomena in Kiezdeutsch 3

» V1: Verb-first (V1) declaratives.

(3) Mache ich so.
Make I so.

‘| do that!

Standard German: Ich mache das so.
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Other Phenomena in Kiezdeutsch

» Many other phenomena both syntactic (e.g., verb-first
declaratives) and non-syntactic (pronouncing ‘ich’ as ‘ish").
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Motivation

» Nowadays many young Germans speak Kiezdeutsch regardless
of background.
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Motivation

» Nowadays many young Germans speak Kiezdeutsch regardless
of background.

» Research to date has focused on either qualitative analysis or
small-scale quantitative studies of hand picked phenomena in
Kiezdeutsch.

» Gap in research: no large-scale computational analysis of
Kiezdeutsch.

Goal — Fill the gap!
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Contributions

» Perform a large-scale logistic regression analysis of
Kiezdeutsch syntax with respect to standard German to reveal
part-of-speech (POS) n-grams characteristic of Kiezdeutsch.

» Test whether the distributional properties of the POS n-grams
affect their predictability of Kiezdeutsch.

P Test the impact of POS granularity and interaction between
POS tags within an n-gram.

P> Test the impact of adding positional information.

» Outline a robust approach to model selection parameter
selection.
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Contributions - This Talk

» Perform a large-scale logistic regression analysis of
Kiezdeutsch syntax with respect to standard German to reveal
part-of-speech (POS) n-grams characteristic of Kiezdeutsch.

P> Test the impact of adding positional information.

12
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Methodology - Overview
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Logistic Regression 1

P Logistic regression is a supervised machine learning approach
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Logistic Regression 1

P Logistic regression is a supervised machine learning approach
commonly used for binary classification.

» It uses the logistic/sigmoid function to calculate the
probability of the outcome.
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Logistic Regression 2

14 ISASRTAS
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Figure: Linear Regression Model

Y=a+bX+e¢
« = intercept, 3 = slope, € = random error
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Figure: Linear Regression Model Figure: Logistic Regression Model
Y=a+pX+e f(Y)=a+pX

« = intercept, 3 = slope, € = random error
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directly studied (e.g., subjects in an experiment).
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Logistic Regression 3

> A logistic regression model is a type of Generalized Linear
Model (GLM).

> GLM extends the linear model by allowing non-normal
distributions for the outcome.

» The Generalized Linear Mixed Model (GLMM) extends GLM
to account for factors that affect the outcome but are not
directly studied (e.g., subjects in an experiment).

» This thesis —+ GLM and GLMM.
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Data
°

KiezDeutsch Korpus (KiDKo)

» Collection of spontaneous peer-group dialog between
teenagers from multi-ethnic and mono-ethnic communities in

Berlin.

> Speakers: 2+ per conversation, and are teen-aged students
(14-17).

> POS: Automatically tagged using Stuttgart-Tiibingen-TagSet
(STTS).

» Sub-corpora: 1 multi-ethnic community (KiDKo-Mu) and 1
for mono-ethnic (KiDKo-Mo).

» This thesis — KiDKo-Mu.
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German RAdio INterviews (GRAIN)

» Non-static collection of interviews broadcast weekly on
German public radio.

> Speakers: 2 adults per interview (1 host, 1 guest). Guests
appear in their professional capacity (e.g., director, council
chairman)

» POS: Tagged using STTS.

» Sub-corpora: silver standard set (automatically annotated)
and gold standard set (manually annotated).

» This thesis — Silver standard set.
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Key Statistics

Original Processed

Corpus Sive Size Speakers
KiDKo (Mu) 359,000 230,000 201
GRAIN (Silver set) 221,000 220,000 124

Table: Key statistics of the corpora used in this thesis. Numbers are
approximates.

21
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Data Processing

Processing included the following steps:

>
>

Assign unique IDs to speakers in both corpora.

Cleanup: remove punctuation (e.g., !,.), speech disfluencies
(e.g., pauses, hesitation, repeated words) and non-words (e.g.,
uninterpretable).

Get sentence-level information (e.g., full sentence, length).

Map fine-grained POS tags from STTS to coarse-grained
universal dependency (UD) tags (e.g., NE,NN — NOUN).

Lemmatize KiDKo tokens (e.g., habe, hast — haben)
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Data Exploration

Data exploration revealed the following:
» Both corpora follow a Zipfian distribution.
> KiDKo has more sentences, but they are shorter.
» KiDKo has much more particles, verbs, and pronoun.
» GRAIN has much more determiners, nouns and adpositions.

» Some speech disfluencies in KiDKo are not tagged as such.
Example: repeated words tagged according to their POS.
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Experiment 1

» Contribution: Build GLM and GLMMs to find which POS
n-grams are most predictive of Kiezdeutsch in the dataset.
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Experiment 1

» Contribution: Build GLM and GLMMs to find which POS
n-grams are most predictive of Kiezdeutsch in the dataset.

» Models: 22 GLMs & GLMMs for main experiment, 12 models
for additional experiments (e.g., test granularity &
interaction).

» We discuss the results of the POS n-grams GLMs with
sum-contrast coding.

24
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zwei, 2008) and pronouns (e.g., ich, du).
— GLM supports directive particles (lassma) and particle ‘so’
phenomena.
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Experiment 1 - POS Unigram Results

» Most predictive: Particles (e.g., Ja, nicht), numerals (e.g.,
zwei, 2008) and pronouns (e.g., ich, du).
— GLM supports directive particles (lassma) and particle ‘so’
phenomena.

» Particles also highlight backchannel responses (e.g., ‘Ja’ &
‘Hm-hm’) which are important in conversations among
bilingual speakers.

» Least predictive: Determiners (die, der), adpositions (in,
auf), and nouns (Deutschland, Alter).

— GLM supports bare NPs phenomenon.
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Experiment 1 - POS Bigram Results

» Most predictive: "PRT PRT" (e.g., Ja ja), “"VERB ADV"
(e.g., Lass mal), “PRT NOUN" (e.g., nicht Training), and
“PRT NUM" (e.g., nicht 360).
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(e.g., Lass mal), “PRT NOUN" (e.g., nicht Training), and
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— GLM supports directive particles (lassma) and particle ‘so’
phenomena.

> Particle ‘nicht’ may indicate increased use of negation in
Kiezdeutsch.

» Least predictive: "ADP DET" (e.g., in das, von der), “DET
NOUN" (e.g., die Griinen), “DET VERB" (e.g., die sollte) ,
and “NOU DET" (e.g., den Kandidaten).

— GLM supports bare NPs phenomenon.

> “DET VERB" and “NOU DET" may indicate decreased use of
relative clauses.
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Experiment 1 - POS Trigram Results

» Quasi complete separation detected for several POS triples
like “PRT PRT PRT" (e.g., Ja ja ja), "“DET VERB ADP”
(e.g., der war im).

27



Experiments
000e

Experiment 1 - POS Trigram Results

» Quasi complete separation detected for several POS triples
like “PRT PRT PRT" (e.g., Ja ja ja), "“DET VERB ADP”
(e.g., der war im).

» Most predictive: "PRT NOUN VERB” (e.g., nicht Shisha
rauchen), “PRT NOUN ADV’ (e.g., nicht Schluss so), “"PRT
PRT NOUN" (e.g., nicht eh Samstag).

— may indicate increased use of negation in Kiezdeutsch.

27



Experiments
000e

Experiment 1 - POS Trigram Results

» Quasi complete separation detected for several POS triples
like “PRT PRT PRT" (e.g., Ja ja ja), "“DET VERB ADP”
(e.g., der war im).

» Most predictive: "PRT NOUN VERB” (e.g., nicht Shisha
rauchen), “PRT NOUN ADV’ (e.g., nicht Schluss so), “"PRT
PRT NOUN" (e.g., nicht eh Samstag).

— may indicate increased use of negation in Kiezdeutsch.

» Least predictive: "DET ADP NOUN" (e.g., den im Jahre),
“DET ADV ADJ" (e.g., die ganz klare), “NOUN DET ADV"
(e.g., Prasidentschaft die jetzt).

— GLM supports bare NPs phenomenon.

27



Experiments
000e

Experiment 1 - POS Trigram Results

» Quasi complete separation detected for several POS triples
like “PRT PRT PRT" (e.g., Ja ja ja), "“DET VERB ADP”
(e.g., der war im).

» Most predictive: "PRT NOUN VERB” (e.g., nicht Shisha
rauchen), “PRT NOUN ADV’ (e.g., nicht Schluss so), “"PRT
PRT NOUN" (e.g., nicht eh Samstag).

— may indicate increased use of negation in Kiezdeutsch.

» Least predictive: "DET ADP NOUN" (e.g., den im Jahre),
“DET ADV ADJ" (e.g., die ganz klare), “NOUN DET ADV"
(e.g., Prasidentschaft die jetzt).

— GLM supports bare NPs phenomenon.

> “NOUN DET ADV" may indicate decreased use of relative

clauses in Kiezdeutsch.
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Experiment 2

» Contribution: Add positional information then run GLMs
from Experiment 1 to find which POS n-grams are most
predictive of Kiezdeutsch in the dataset.
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Experiment 2

» Contribution: Add positional information then run GLMs
from Experiment 1 to find which POS n-grams are most
predictive of Kiezdeutsch in the dataset.

» Models: 6 GLMs were tested on a sample of size 100,000.
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» Sentence Markers: introduce 2 POS tags to mark sentence
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sentence).
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Experiment 2 - Positional Information

Positional information was added in two ways:

» Sentence Markers: introduce 2 POS tags to mark sentence
boundaries, SOS (start of sentence) and EOS (end of
sentence).

» Augmented POS tags: add affix to each POS tag to
indicate its position in the sentence.
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Experiment 2 - Positional Information 2

(4) a. <SOS> Was  machst du <EOS>
SOS  PRON VERB PRON EOS

‘What are you doing?’

b. Was machst du
SOS_PRON VERB_ MID PRON_ EOS

‘What are you doing?’
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Experiment 2 - Results 1

Sentence markers results:

» Results for all POS n-gram models in line with experiment 1.
— support for bare NPs, directive particles and particle ‘so’.
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Experiment 2 - Results 1

Sentence markers results:

» Results for all POS n-gram models in line with experiment 1.
— support for bare NPs, directive particles and particle ‘so’.

» POS bigram “SOS VERB" (e.g., <SOS> Sehe), POS
trigrams “SOS VERB NOUN" (e.g., <SOS> War Deutscher),
“SOS VERB ADV" (e.g., <SOS> Habe doch), “SOS VERB
ADP” (e.g., <SOS> Ist bei) are some of the most predictive
of Kiezdeutsch in the data.

— support verb-first declaratives phenomenon.
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Experiment 2 - Results 2

Augmented POS tags results:

» Results for POS unigram model in line with experiment 1.
— support for bare NPs, directive particles and particle ‘so’.
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Experiment 2 - Results 2

Augmented POS tags results:
» Results for POS unigram model in line with experiment 1.
— support for bare NPs, directive particles and particle ‘so’.
» POS bigram and trigram models suffered from data sparsity
and separation.
— data and models are insufficient to produce significant
results.
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Conclusion
.

Conclusion

» This thesis filled a gap in the knowledge by performing a
large-scale logistic regression analysis of Kiezdeutsch w.r.t.
standard German.

» Findings support well-known phenomena: bare NPs, directive
particles, particle ‘so’, and verb-first.

» Findings suggest possible phenomena: increased use of
negation, decreased use of relative clauses.
— further research is recommended to determine if these are
Kiezdeutsch phenomena or latent properties of our corpora.

» Adding positional information improves representation of
syntactic phenomena given enough data.
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°

Conclusion

Thank you for listening.
Questions?
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Coding Categorical Variables

Flavor Cl C2 cC3
Vanilla 0 0 0

Chocolate 1 0 0
Lemon 0 1 0
Other 0 0 1

Table: Dummy coding for the
variable ice cream flavor with
4 groups. Vanilla is the
reference level.
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Coding Categorical Variables

Flavor Cl C2 cC3 Flavor C1 C2 C3
Vanilla 0 0 0 Vanilla 0.75 -0.25 -0.25
Chocolate 1 0 0 Chocolate -0.25 0.75 -0.25
Lemon 0 1 0 Lemon -0.25 -0.25 0.75
Other 0 0 1 Other -0.25 -0.25 -0.25
Table: Dummy coding for the Table: Sum contrast coding for the
variable ice cream flavor with variable ice cream flavor with 4
4 groups. Vanilla is the groups. The grand mean is the
reference level. reference level.
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Logistic Regression

> A logistic regression model is a type of Generalized Linear
Model (GLM) which uses the logit (log-odds) for the link
function ().

» It uses the logistic/sigmoid function to calculate the
probability of the outcome.

F(Y)=a+BX
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Logistic Regression

> A logistic regression model is a type of Generalized Linear
Model (GLM) which uses the logit (log-odds) for the link
function ().

» It uses the logistic/sigmoid function to calculate the
probability of the outcome.

F(Y)=a+BX

(Y) = log | 1255
where p = P(Y =1)
P(Y = 1) = 1+]é—6
0 = o, B (model parameters)
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Comparing Models

» Analysis of Variance (ANOVA) using likelihood ratio test
(LRT) reveals if the more complex model is significantly
better at capturing the data than the simpler model.
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» Analysis of Variance (ANOVA) using likelihood ratio test
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