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What is Kiezdeutsch?

Definition
German-language variety spoken primarily by teenagers from
multi-ethnic urban neighborhoods in casual conversations with
their peers.
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What is Kiezdeutsch?

I A way of self-identification.

Figure: German rappers Eko Fresh and Ali Bumaye sing

“Lan lass ma’ ya!” (Dude, let’s go!). Source: YouTube.com
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What is Kiezdeutsch?

I Part of bigger phenomenon ‘Urban Youth Languages’.
Other examples: Multicultural London English (UK),
straattaal (Netherlands), Rinkebysvenska (Sweden), Isamto
(Africa)

I A dialect in its own standing - Heike Wiese
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Syntactic Phenomena in Kiezdeutsch 1

I bare NPs: Noun phrases (NPs) lacking determiners and/or
prepositions.

(1) Können
Can

wir
we

Party
party

machen?
make?

‘Can we have [a] party?’

Standard German: Können wir eine Party machen?
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Syntactic Phenomena in Kiezdeutsch 2

I Directive Particles: New particles “Lassma”, “mussttu” at
start of sentence.

(2) Lass
let

mal
once

morgen
tomorrow

saufen
drinking

gehen
go

SPK19.
SPK19.

‘Let’s go drinking tomorrow SPK19.’
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Syntactic Phenomena in Kiezdeutsch 3

I V1: Verb-first (V1) declaratives.

(3) Mache
Make

ich
I

so.
so.

‘I do that.’

Standard German: Ich mache das so.
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Other Phenomena in Kiezdeutsch

I Many other phenomena both syntactic (e.g., verb-first
declaratives) and non-syntactic (pronouncing ‘ich’ as ‘ish’).
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Motivation

I Nowadays many young Germans speak Kiezdeutsch regardless
of background.

I Research to date has focused on either qualitative analysis or
small-scale quantitative studies of hand picked phenomena in
Kiezdeutsch.

I Gap in research: no large-scale computational analysis of
Kiezdeutsch.

Goal → Fill the gap!
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Contributions

I Perform a large-scale logistic regression analysis of
Kiezdeutsch syntax with respect to standard German to reveal
part-of-speech (POS) n-grams characteristic of Kiezdeutsch.

I Test whether the distributional properties of the POS n-grams
affect their predictability of Kiezdeutsch.

I Test the impact of POS granularity and interaction between
POS tags within an n-gram.

I Test the impact of adding positional information.
I Outline a robust approach to model selection parameter

selection.
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Contributions - This Talk

I Perform a large-scale logistic regression analysis of
Kiezdeutsch syntax with respect to standard German to reveal
part-of-speech (POS) n-grams characteristic of Kiezdeutsch.
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Methodology - Overview
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Logistic Regression 1

I Logistic regression is a supervised machine learning approach
commonly used for binary classification.

I It uses the logistic/sigmoid function to calculate the
probability of the outcome.
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Logistic Regression 2

0.5

1

−6 −4 −2 0 2 4 6

Figure: Linear Regression Model

Y = α+ βX + ε
α = intercept, β = slope, ε = random error

⇒
0.5

1

−6 −4 −2 0 2 4 6

Figure: Logistic Regression Model

f (Y ) = α+ βX
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Logistic Regression 3

I A logistic regression model is a type of Generalized Linear
Model (GLM).

I GLM extends the linear model by allowing non-normal
distributions for the outcome.

I The Generalized Linear Mixed Model (GLMM) extends GLM
to account for factors that affect the outcome but are not
directly studied (e.g., subjects in an experiment).

I This thesis → GLM and GLMM.
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Methodology - Data
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KiezDeutsch Korpus (KiDKo)

I Collection of spontaneous peer-group dialog between
teenagers from multi-ethnic and mono-ethnic communities in
Berlin.

I Speakers: 2+ per conversation, and are teen-aged students
(14-17).

I POS: Automatically tagged using Stuttgart-Tübingen-TagSet
(STTS).

I Sub-corpora: 1 multi-ethnic community (KiDKo-Mu) and 1
for mono-ethnic (KiDKo-Mo).

I This thesis → KiDKo-Mu.
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German RAdio INterviews (GRAIN)

I Non-static collection of interviews broadcast weekly on
German public radio.

I Speakers: 2 adults per interview (1 host, 1 guest). Guests
appear in their professional capacity (e.g., director, council
chairman)

I POS: Tagged using STTS.
I Sub-corpora: silver standard set (automatically annotated)

and gold standard set (manually annotated).
I This thesis → Silver standard set.
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Key Statistics

Corpus Original
Size

Processed
Size Speakers

KiDKo (Mu) 359,000 230,000 201
GRAIN (Silver set) 221,000 220,000 124

Table: Key statistics of the corpora used in this thesis. Numbers are
approximates.
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Data Processing

Processing included the following steps:
I Assign unique IDs to speakers in both corpora.

I Cleanup: remove punctuation (e.g., !,.), speech disfluencies
(e.g., pauses, hesitation, repeated words) and non-words (e.g.,
uninterpretable).

I Get sentence-level information (e.g., full sentence, length).
I Map fine-grained POS tags from STTS to coarse-grained

universal dependency (UD) tags (e.g., NE,NN → NOUN).
I Lemmatize KiDKo tokens (e.g., habe, hast → haben)
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Data Exploration

Data exploration revealed the following:
I Both corpora follow a Zipfian distribution.

I KiDKo has more sentences, but they are shorter.
I KiDKo has much more particles, verbs, and pronoun.
I GRAIN has much more determiners, nouns and adpositions.
I Some speech disfluencies in KiDKo are not tagged as such.

Example: repeated words tagged according to their POS.
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Experiment 1

I Contribution: Build GLM and GLMMs to find which POS
n-grams are most predictive of Kiezdeutsch in the dataset.

I Models: 22 GLMs & GLMMs for main experiment, 12 models
for additional experiments (e.g., test granularity &
interaction).

I We discuss the results of the POS n-grams GLMs with
sum-contrast coding.
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Experiment 1 - POS Unigram Results

I Most predictive: Particles (e.g., Ja, nicht), numerals (e.g.,
zwei, 2008) and pronouns (e.g., ich, du).
→ GLM supports directive particles (lassma) and particle ‘so’
phenomena.

I Particles also highlight backchannel responses (e.g., ‘Ja’ &
‘Hm-hm’) which are important in conversations among
bilingual speakers.

I Least predictive: Determiners (die, der), adpositions (in,
auf), and nouns (Deutschland, Alter).
→ GLM supports bare NPs phenomenon.
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Experiment 1 - POS Bigram Results

I Most predictive: “PRT PRT” (e.g., Ja ja), “VERB ADV”
(e.g., Lass mal), “PRT NOUN” (e.g., nicht Training), and
“PRT NUM” (e.g., nicht 360).
→ GLM supports directive particles (lassma) and particle ‘so’
phenomena.

I Particle ‘nicht’ may indicate increased use of negation in
Kiezdeutsch.

I Least predictive: “ADP DET” (e.g., in das, von der), “DET
NOUN” (e.g., die Grünen), “DET VERB” (e.g., die sollte) ,
and “NOU DET” (e.g., den Kandidaten).
→ GLM supports bare NPs phenomenon.

I “DET VERB” and “NOU DET” may indicate decreased use of
relative clauses.
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Experiment 1 - POS Trigram Results

I Quasi complete separation detected for several POS triples
like “PRT PRT PRT” (e.g., Ja ja ja), “DET VERB ADP”
(e.g., der war im).

I Most predictive: “PRT NOUN VERB” (e.g., nicht Shisha
rauchen), “PRT NOUN ADV’ (e.g., nicht Schluss so), “PRT
PRT NOUN” (e.g., nicht eh Samstag).
→ may indicate increased use of negation in Kiezdeutsch.

I Least predictive: “DET ADP NOUN” (e.g., den im Jahre),
“DET ADV ADJ” (e.g., die ganz klare), “NOUN DET ADV”
(e.g., Präsidentschaft die jetzt).
→ GLM supports bare NPs phenomenon.

I “NOUN DET ADV” may indicate decreased use of relative
clauses in Kiezdeutsch.
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Experiment 2

I Contribution: Add positional information then run GLMs
from Experiment 1 to find which POS n-grams are most
predictive of Kiezdeutsch in the dataset.

I Models: 6 GLMs were tested on a sample of size 100,000.



28

Overview Methodology Data Experiments Conclusion Discussion Appendix

Experiment 2

I Contribution: Add positional information then run GLMs
from Experiment 1 to find which POS n-grams are most
predictive of Kiezdeutsch in the dataset.

I Models: 6 GLMs were tested on a sample of size 100,000.



29

Overview Methodology Data Experiments Conclusion Discussion Appendix

Experiment 2 - Positional Information

Positional information was added in two ways:
I Sentence Markers: introduce 2 POS tags to mark sentence

boundaries, SOS (start of sentence) and EOS (end of
sentence).

I Augmented POS tags: add affix to each POS tag to
indicate its position in the sentence.
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Experiment 2 - Positional Information 2

(4) a. <SOS>
SOS

Was
PRON

machst
VERB

du
PRON

<EOS>
EOS

‘What are you doing?’
b. Was

SOS_PRON
machst
VERB_MID

du
PRON_EOS

‘What are you doing?’
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Experiment 2 - Results 1

Sentence markers results:
I Results for all POS n-gram models in line with experiment 1.

→ support for bare NPs, directive particles and particle ‘so’.

I POS bigram “SOS VERB” (e.g., <SOS> Sehe), POS
trigrams “SOS VERB NOUN” (e.g., <SOS> War Deutscher),
“SOS VERB ADV” (e.g., <SOS> Habe doch), “SOS VERB
ADP” (e.g., <SOS> Ist bei) are some of the most predictive
of Kiezdeutsch in the data.
→ support verb-first declaratives phenomenon.
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Experiment 2 - Results 2

Augmented POS tags results:
I Results for POS unigram model in line with experiment 1.

→ support for bare NPs, directive particles and particle ‘so’.

I POS bigram and trigram models suffered from data sparsity
and separation.
→ data and models are insufficient to produce significant
results.
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Augmented POS tags results:
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→ support for bare NPs, directive particles and particle ‘so’.
I POS bigram and trigram models suffered from data sparsity
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Conclusion

I This thesis filled a gap in the knowledge by performing a
large-scale logistic regression analysis of Kiezdeutsch w.r.t.
standard German.

I Findings support well-known phenomena: bare NPs, directive
particles, particle ‘so’, and verb-first.

I Findings suggest possible phenomena: increased use of
negation, decreased use of relative clauses.
→ further research is recommended to determine if these are
Kiezdeutsch phenomena or latent properties of our corpora.

I Adding positional information improves representation of
syntactic phenomena given enough data.
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Conclusion

Thank you for listening.
Questions?
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Coding Categorical Variables

Flavor C1 C2 C3

Vanilla 0 0 0
Chocolate 1 0 0
Lemon 0 1 0
Other 0 0 1

Table: Dummy coding for the
variable ice cream flavor with
4 groups. Vanilla is the
reference level.

Flavor C1 C2 C3

Vanilla 0.75 -0.25 -0.25
Chocolate -0.25 0.75 -0.25
Lemon -0.25 -0.25 0.75
Other -0.25 -0.25 -0.25

Table: Sum contrast coding for the
variable ice cream flavor with 4
groups. The grand mean is the
reference level.
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Logistic Regression

I A logistic regression model is a type of Generalized Linear
Model (GLM) which uses the logit (log-odds) for the link
function f(Y).

I It uses the logistic/sigmoid function to calculate the
probability of the outcome.

f (Y ) = α+ βX

f (Y ) = log
[

p
(1−p)

]
where p = P(Y = 1)
P(Y = 1) = 1

1+e−θ

θ = α, β (model parameters)
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Comparing Models

I Analysis of Variance (ANOVA) using likelihood ratio test
(LRT) reveals if the more complex model is significantly
better at capturing the data than the simpler model.
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