Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix

A Large-scale Logistic Regression Analysis of Kiezdeutsch Syntax

Reem Alatrash

January 15, 2020

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000	0	0	000000

Outline

- 1. Overview
- 2. Methodology
- 3. Data
- 4. Experiments & Results
- 5. Conclusion
- 6. Discussion

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
• 00 0000000	00000	000000	000000000			000000

Definition

German-language variety spoken primarily by teenagers from multi-ethnic urban neighborhoods in casual conversations with their peers.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
000000000	00000	000000	000000000	0	0	000000

► A way of self-identification.

Figure: German rappers Eko Fresh and Ali Bumaye sing

"Lan lass ma' ya!" (Dude, let's go!). Source: YouTube.com

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
000000000	00000	000000	000000000	0	0	000000

 Part of bigger phenomenon 'Urban Youth Languages'. Other examples: Multicultural London English (UK), straattaal (Netherlands), Rinkebysvenska (Sweden), Isamto (Africa)

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
000000000	00000	000000	000000000	0	0	000000

- Part of bigger phenomenon 'Urban Youth Languages'. Other examples: Multicultural London English (UK), straattaal (Netherlands), Rinkebysvenska (Sweden), Isamto (Africa)
- ► A dialect in its own standing Heike Wiese

bare NPs: Noun phrases (NPs) lacking determiners and/or prepositions.

- bare NPs: Noun phrases (NPs) lacking determiners and/or prepositions.
- (1) Können wir Party machen? Can we party make?
 'Can we have [a] party?'

- bare NPs: Noun phrases (NPs) lacking determiners and/or prepositions.
- (1) Können wir Party machen? Can we party make?
 'Can we have [a] party?'

Standard German: Können wir eine Party machen?

 Directive Particles: New particles "Lassma", "mussttu" at start of sentence.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
000 0000 000						

- Directive Particles: New particles "Lassma", "musstu" at start of sentence.
- (2) Lass mal morgen saufen gehen SPK19.
 let once tomorrow drinking go SPK19.
 'Let's go drinking tomorrow SPK19.'

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
000 0000 000						

► V1: Verb-first (V1) declaratives.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
000 0000 000						

V1: Verb-first (V1) declaratives.

(3) Mache ich so. Make I so. 'I do that.'

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
000 0000 000						

V1: Verb-first (V1) declaratives.

(3) Mache ich so. Make I so. 'I do that.'

Standard German: Ich mache das so.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000	O	0	000000

Other Phenomena in Kiezdeutsch

 Many other phenomena both syntactic (e.g., verb-first declaratives) and non-syntactic (pronouncing 'ich' as 'ish').

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
○○○○○○●○○	00000	000000	000000000	O	0	000000
Motivatio	on					

 Nowadays many young Germans speak Kiezdeutsch regardless of background.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
○○○○○○●○○	00000	000000	000000000	O	0	000000
Motivatio	on					

- Nowadays many young Germans speak Kiezdeutsch regardless of background.
- Research to date has focused on either qualitative analysis or small-scale quantitative studies of hand picked phenomena in Kiezdeutsch.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
○○○○○○●○○	00000	000000	000000000	O	0	000000
Motivatio	on					

- Nowadays many young Germans speak Kiezdeutsch regardless of background.
- Research to date has focused on either qualitative analysis or small-scale quantitative studies of hand picked phenomena in Kiezdeutsch.
- Gap in research: no large-scale computational analysis of Kiezdeutsch.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
○○○○○○●○○	00000	000000	000000000	O	0	000000
Motivatio	on					

- Nowadays many young Germans speak Kiezdeutsch regardless of background.
- Research to date has focused on either qualitative analysis or small-scale quantitative studies of hand picked phenomena in Kiezdeutsch.
- Gap in research: no large-scale computational analysis of Kiezdeutsch.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
○○○○○○●○○	00000	000000	000000000	O	0	000000
Motivatio	on					

- Nowadays many young Germans speak Kiezdeutsch regardless of background.
- Research to date has focused on either qualitative analysis or small-scale quantitative studies of hand picked phenomena in Kiezdeutsch.
- Gap in research: no large-scale computational analysis of Kiezdeutsch.

Goal \rightarrow Fill the gap!

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
○○○○○○○●○	00000	000000	000000000	O	0	000000
Contribu	tions					

Perform a large-scale logistic regression analysis of Kiezdeutsch syntax with respect to standard German to reveal part-of-speech (POS) n-grams characteristic of Kiezdeutsch.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
○○○○○○○●○	00000	000000	000000000	O	0	000000
Contribu	tions					

- Perform a large-scale logistic regression analysis of Kiezdeutsch syntax with respect to standard German to reveal part-of-speech (POS) n-grams characteristic of Kiezdeutsch.
- Test whether the distributional properties of the POS n-grams affect their predictability of Kiezdeutsch.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
○○○○○○○●○	00000	000000	000000000	O	0	000000
Contribu	tions					

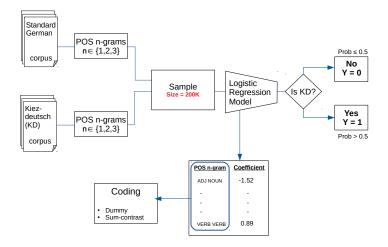
- Perform a large-scale logistic regression analysis of Kiezdeutsch syntax with respect to standard German to reveal part-of-speech (POS) n-grams characteristic of Kiezdeutsch.
- Test whether the distributional properties of the POS n-grams affect their predictability of Kiezdeutsch.
- Test the impact of POS granularity and interaction between POS tags within an n-gram.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
○○○○○○○●○	00000	000000	000000000	O	0	000000
Contribu	tions					

- Perform a large-scale logistic regression analysis of Kiezdeutsch syntax with respect to standard German to reveal part-of-speech (POS) n-grams characteristic of Kiezdeutsch.
- Test whether the distributional properties of the POS n-grams affect their predictability of Kiezdeutsch.
- Test the impact of POS granularity and interaction between POS tags within an n-gram.
- Test the impact of adding positional information.

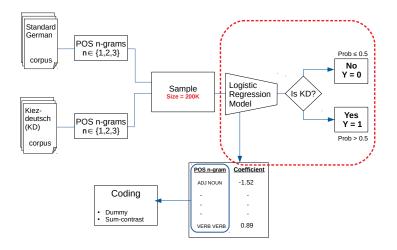
Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
○○○○○○○●○	00000	000000	000000000	O	0	000000
Contribu	tions					

- Perform a large-scale logistic regression analysis of Kiezdeutsch syntax with respect to standard German to reveal part-of-speech (POS) n-grams characteristic of Kiezdeutsch.
- Test whether the distributional properties of the POS n-grams affect their predictability of Kiezdeutsch.
- Test the impact of POS granularity and interaction between POS tags within an n-gram.
- Test the impact of adding positional information.
- Outline a robust approach to model selection parameter selection.



Contributions - This Talk

- Perform a large-scale logistic regression analysis of Kiezdeutsch syntax with respect to standard German to reveal part-of-speech (POS) n-grams characteristic of Kiezdeutsch.
- Test whether the distributional properties of the POS n-grams affect their predictability of Kiezdeutsch.
- Test the impact of POS granularity and interaction between POS tags within an n-gram.
- Test the impact of adding positional information.
- Outline a robust approach to model selection parameter selection.


Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	●0000	000000	000000000	O	0	000000

Methodology - Overview

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	0●000	000000	000000000	0	0	000000

Methodology - Model

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00●00	000000	000000000	0	0	000000

Logistic regression is a supervised machine learning approach commonly used for binary classification.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00●00	000000	000000000	O	0	000000

- Logistic regression is a supervised machine learning approach commonly used for binary classification.
- It uses the logistic/sigmoid function to calculate the probability of the outcome.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	000●0	000000	000000000	O	0	000000

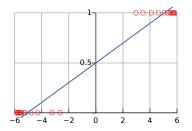


Figure: Linear Regression Model

 $Y = \alpha + \beta X + \epsilon$

 $\alpha = \text{intercept}, \ \beta = \text{slope}, \ \epsilon = \text{random error}$

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	000●0	000000	000000000	O	0	000000

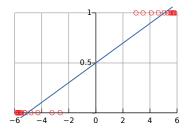


Figure: Linear Regression Model

 $Y = \alpha + \beta X + \epsilon$

 $\alpha = \text{intercept}, \ \beta = \text{slope}, \ \epsilon = \text{random error}$

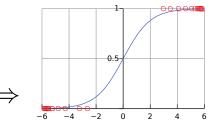


Figure: Logistic Regression Model

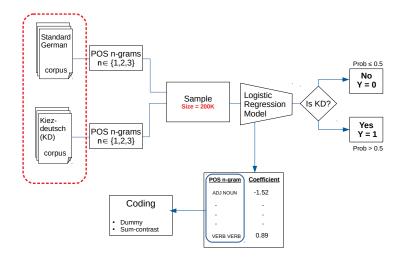
$$f(Y) = \alpha + \beta X$$

 A logistic regression model is a type of Generalized Linear Model (GLM).

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	0000●	000000	000000000	O	0	000000
	D ·	~				

- A logistic regression model is a type of Generalized Linear Model (GLM).
- GLM extends the linear model by allowing non-normal distributions for the outcome.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	0000●	000000	000000000	O	0	000000
	_					


- A logistic regression model is a type of Generalized Linear Model (GLM).
- GLM extends the linear model by allowing non-normal distributions for the outcome.
- The Generalized Linear Mixed Model (GLMM) extends GLM to account for factors that affect the outcome but are not directly studied (e.g., subjects in an experiment).

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	0000●	000000	000000000	O	0	000000

- A logistic regression model is a type of Generalized Linear Model (GLM).
- GLM extends the linear model by allowing non-normal distributions for the outcome.
- The Generalized Linear Mixed Model (GLMM) extends GLM to account for factors that affect the outcome but are not directly studied (e.g., subjects in an experiment).
- This thesis \rightarrow GLM and GLMM.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	00000	000000000			000000

Methodology - Data

 Collection of spontaneous peer-group dialog between teenagers from multi-ethnic and mono-ethnic communities in Berlin.

- Collection of spontaneous peer-group dialog between teenagers from multi-ethnic and mono-ethnic communities in Berlin.
- Speakers: 2+ per conversation, and are teen-aged students (14-17).

- Collection of spontaneous peer-group dialog between teenagers from multi-ethnic and mono-ethnic communities in Berlin.
- Speakers: 2+ per conversation, and are teen-aged students (14-17).
- POS: Automatically tagged using Stuttgart-Tübingen-TagSet (STTS).

- Collection of spontaneous peer-group dialog between teenagers from multi-ethnic and mono-ethnic communities in Berlin.
- Speakers: 2+ per conversation, and are teen-aged students (14-17).
- POS: Automatically tagged using Stuttgart-Tübingen-TagSet (STTS).
- Sub-corpora: 1 multi-ethnic community (KiDKo-Mu) and 1 for mono-ethnic (KiDKo-Mo).

- Collection of spontaneous peer-group dialog between teenagers from multi-ethnic and mono-ethnic communities in Berlin.
- Speakers: 2+ per conversation, and are teen-aged students (14-17).
- POS: Automatically tagged using Stuttgart-Tübingen-TagSet (STTS).
- Sub-corpora: 1 multi-ethnic community (KiDKo-Mu) and 1 for mono-ethnic (KiDKo-Mo).
- This thesis \rightarrow KiDKo-Mu.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	00●000	000000000	0	0	000000

 Non-static collection of interviews broadcast weekly on German public radio.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	○○●○○○	000000000	O	0	000000
				`		

- Non-static collection of interviews broadcast weekly on German public radio.
- Speakers: 2 adults per interview (1 host, 1 guest). Guests appear in their professional capacity (e.g., director, council chairman)

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	00●000	000000000	0	0	000000
~				`		

- Non-static collection of interviews broadcast weekly on German public radio.
- Speakers: 2 adults per interview (1 host, 1 guest). Guests appear in their professional capacity (e.g., director, council chairman)
- POS: Tagged using STTS.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	00●000	000000000	O	0	000000
				、 、		

- Non-static collection of interviews broadcast weekly on German public radio.
- Speakers: 2 adults per interview (1 host, 1 guest). Guests appear in their professional capacity (e.g., director, council chairman)
- POS: Tagged using STTS.
- Sub-corpora: silver standard set (automatically annotated) and gold standard set (manually annotated).

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	00●000	000000000	O	0	000000
		• •		x		

- Non-static collection of interviews broadcast weekly on German public radio.
- Speakers: 2 adults per interview (1 host, 1 guest). Guests appear in their professional capacity (e.g., director, council chairman)
- POS: Tagged using STTS.
- Sub-corpora: silver standard set (automatically annotated) and gold standard set (manually annotated).
- This thesis \rightarrow Silver standard set.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000●00	000000000	O	0	000000

Key Statistics

Corpus	Original Size	Processed Size	Speakers
KiDKo (Mu)	359,000	230,000	201
GRAIN (Silver set)	221,000	220,000	124

Table: Key statistics of the corpora used in this thesis. Numbers are approximates.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	0000●0	000000000	O	0	000000
Data Pro	ocessing					

Assign unique IDs to speakers in both corpora.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	0000●0	000000000	O	0	000000
Data Pro	ocessing					

- Assign unique IDs to speakers in both corpora.
- Cleanup: remove punctuation (e.g., !,.), speech disfluencies (e.g., pauses, hesitation, repeated words) and non-words (e.g., uninterpretable).

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	0000●0	000000000	O	0	000000
Data Pro	ocessing					

- Assign unique IDs to speakers in both corpora.
- Cleanup: remove punctuation (e.g., !,.), speech disfluencies (e.g., pauses, hesitation, repeated words) and non-words (e.g., uninterpretable).
- ► Get sentence-level information (e.g., full sentence, length).

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	0000●0	000000000	O	0	000000
Data Pro	ocessing					

- Assign unique IDs to speakers in both corpora.
- Cleanup: remove punctuation (e.g., !,.), speech disfluencies (e.g., pauses, hesitation, repeated words) and non-words (e.g., uninterpretable).
- ► Get sentence-level information (e.g., full sentence, length).
- Map fine-grained POS tags from STTS to coarse-grained universal dependency (UD) tags (e.g., NE,NN → NOUN).

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	0000●0	000000000	O	0	000000
Data Pro	ocessing					

- Assign unique IDs to speakers in both corpora.
- Cleanup: remove punctuation (e.g., !,.), speech disfluencies (e.g., pauses, hesitation, repeated words) and non-words (e.g., uninterpretable).
- ► Get sentence-level information (e.g., full sentence, length).
- Map fine-grained POS tags from STTS to coarse-grained universal dependency (UD) tags (e.g., NE,NN → NOUN).
- Lemmatize KiDKo tokens (e.g., habe, hast \rightarrow haben)

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	00000●	000000000	O	0	000000
Data Ex	ploration					

Both corpora follow a Zipfian distribution.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	00000●	000000000	O	0	000000
Data Ex	oloration					

- Both corpora follow a Zipfian distribution.
- ▶ KiDKo has more sentences, but they are shorter.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	00000●	000000000	O	0	000000
Data Ex	oloration					

- Both corpora follow a Zipfian distribution.
- ► KiDKo has more sentences, but they are shorter.
- ► KiDKo has much more particles, verbs, and pronoun.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	00000●	000000000	O	0	000000
Data Ex	oloration					

- Both corpora follow a Zipfian distribution.
- ► KiDKo has more sentences, but they are shorter.
- ► KiDKo has much more particles, verbs, and pronoun.
- GRAIN has much more determiners, nouns and adpositions.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	00000●	000000000	O	0	000000
Data Exi	ploration					

- Both corpora follow a Zipfian distribution.
- ► KiDKo has more sentences, but they are shorter.
- KiDKo has much more particles, verbs, and pronoun.
- GRAIN has much more determiners, nouns and adpositions.
- Some speech disfluencies in KiDKo are not tagged as such. Example: repeated words tagged according to their POS.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	•00000000	O	0	000000
Experime	ent 1					

 Contribution: Build GLM and GLMMs to find which POS n-grams are most predictive of Kiezdeutsch in the dataset.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	•00000000	O	0	000000
Experime	ent 1					

- Contribution: Build GLM and GLMMs to find which POS n-grams are most predictive of Kiezdeutsch in the dataset.
- Models: 22 GLMs & GLMMs for main experiment, 12 models for additional experiments (e.g., test granularity & interaction).

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	•00000000	O	0	000000
Experime	ent 1					

- Contribution: Build GLM and GLMMs to find which POS n-grams are most predictive of Kiezdeutsch in the dataset.
- Models: 22 GLMs & GLMMs for main experiment, 12 models for additional experiments (e.g., test granularity & interaction).
- We discuss the results of the POS n-grams GLMs with sum-contrast coding.

Most predictive: Particles (e.g., Ja, nicht), numerals (e.g., zwei, 2008) and pronouns (e.g., ich, du).
 → GLM supports directive particles (lassma) and particle 'so' phenomena.

▶ Most predictive: Particles (e.g., Ja, nicht), numerals (e.g., zwei, 2008) and pronouns (e.g., ich, du).
 → GLM supports directive particles (lassma) and particle 'so'

phenomena.

 Particles also highlight backchannel responses (e.g., 'Ja' & 'Hm-hm') which are important in conversations among bilingual speakers.

▶ Most predictive: Particles (e.g., Ja, nicht), numerals (e.g., zwei, 2008) and pronouns (e.g., ich, du).
 → GLM supports directive particles (lassma) and particle 'so'

phenomena.

- Particles also highlight backchannel responses (e.g., 'Ja' & 'Hm-hm') which are important in conversations among bilingual speakers.
- Least predictive: Determiners (die, der), adpositions (in, auf), and nouns (Deutschland, Alter).

 \rightarrow GLM supports bare NPs phenomenon.

Experiment 1 - POS Bigram Results

 Most predictive: "PRT PRT" (e.g., Ja ja), "VERB ADV" (e.g., Lass mal), "PRT NOUN" (e.g., nicht Training), and "PRT NUM" (e.g., nicht 360).

 → GLM supports directive particles (lassma) and particle 'so'

 \rightarrow GLW supports directive particles (lassma) and particle so phenomena.

 Most predictive: "PRT PRT" (e.g., Ja ja), "VERB ADV" (e.g., Lass mal), "PRT NOUN" (e.g., nicht Training), and "PRT NUM" (e.g., nicht 360).
 → GLM supports directive particles (lassma) and particle 'so' phenomena.

 Particle 'nicht' may indicate increased use of negation in Kiezdeutsch.

000000 00000 00000 00000 0 0 000000 0 0	Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
	0000000000	00000	000000	00000000			000000

Most predictive: "PRT PRT" (e.g., Ja ja), "VERB ADV" (e.g., Lass mal), "PRT NOUN" (e.g., nicht Training), and "PRT NUM" (e.g., nicht 360).

 \rightarrow GLM supports directive particles (lassma) and particle 'so' phenomena.

- Particle 'nicht' may indicate increased use of negation in Kiezdeutsch.
- Least predictive: "ADP DET" (e.g., in das, von der), "DET NOUN" (e.g., die Grünen), "DET VERB" (e.g., die sollte), and "NOU DET" (e.g., den Kandidaten).

 \rightarrow GLM supports bare NPs phenomenon.

Most predictive: "PRT PRT" (e.g., Ja ja), "VERB ADV" (e.g., Lass mal), "PRT NOUN" (e.g., nicht Training), and "PRT NUM" (e.g., nicht 360).

 \rightarrow GLM supports directive particles (lassma) and particle 'so' phenomena.

- Particle 'nicht' may indicate increased use of negation in Kiezdeutsch.
- ► Least predictive: "ADP DET" (e.g., in das, von der), "DET NOUN" (e.g., die Grünen), "DET VERB" (e.g., die sollte), and "NOU DET" (e.g., den Kandidaten).
 → GLM supports bare NPs phenomenon.

 "DET VERB" and "NOU DET" may indicate decreased use of relative clauses.

 Quasi complete separation detected for several POS triples like "PRT PRT PRT" (e.g., Ja ja ja), "DET VERB ADP" (e.g., der war im).

- Quasi complete separation detected for several POS triples like "PRT PRT PRT" (e.g., Ja ja ja), "DET VERB ADP" (e.g., der war im).
- Most predictive: "PRT NOUN VERB" (e.g., nicht Shisha rauchen), "PRT NOUN ADV' (e.g., nicht Schluss so), "PRT PRT NOUN" (e.g., nicht eh Samstag).

 \rightarrow may indicate increased use of negation in Kiezdeutsch.

- Quasi complete separation detected for several POS triples like "PRT PRT PRT" (e.g., Ja ja ja), "DET VERB ADP" (e.g., der war im).
- Most predictive: "PRT NOUN VERB" (e.g., nicht Shisha rauchen), "PRT NOUN ADV' (e.g., nicht Schluss so), "PRT PRT NOUN" (e.g., nicht eh Samstag).

 \rightarrow may indicate increased use of negation in Kiezdeutsch.

Least predictive: "DET ADP NOUN" (e.g., den im Jahre), "DET ADV ADJ" (e.g., die ganz klare), "NOUN DET ADV" (e.g., Präsidentschaft die jetzt).

 \rightarrow GLM supports bare NPs phenomenon.

- Quasi complete separation detected for several POS triples like "PRT PRT PRT" (e.g., Ja ja ja), "DET VERB ADP" (e.g., der war im).
- Most predictive: "PRT NOUN VERB" (e.g., nicht Shisha rauchen), "PRT NOUN ADV' (e.g., nicht Schluss so), "PRT PRT NOUN" (e.g., nicht eh Samstag).

 \rightarrow may indicate increased use of negation in Kiezdeutsch.

Least predictive: "DET ADP NOUN" (e.g., den im Jahre), "DET ADV ADJ" (e.g., die ganz klare), "NOUN DET ADV" (e.g., Präsidentschaft die jetzt).

 \rightarrow GLM supports bare NPs phenomenon.

 "NOUN DET ADV" may indicate decreased use of relative clauses in Kiezdeutsch.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	○○○○●○○○○	O	0	000000
Experime	ent 2					

Contribution: Add positional information then run GLMs from Experiment 1 to find which POS n-grams are most predictive of Kiezdeutsch in the dataset.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	○○○○●○○○○	O	0	000000
Experime	ent 2					

- Contribution: Add positional information then run GLMs from Experiment 1 to find which POS n-grams are most predictive of Kiezdeutsch in the dataset.
- **Models:** 6 GLMs were tested on a sample of size 100,000.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000			

Experiment 2 - Positional Information

Positional information was added in two ways:

Sentence Markers: introduce 2 POS tags to mark sentence boundaries, SOS (start of sentence) and EOS (end of sentence).

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000			

Experiment 2 - Positional Information

Positional information was added in two ways:

- Sentence Markers: introduce 2 POS tags to mark sentence boundaries, SOS (start of sentence) and EOS (end of sentence).
- Augmented POS tags: add affix to each POS tag to indicate its position in the sentence.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
			000000000			

Experiment 2 - Positional Information 2

- (4) a. <SOS> Was machst du <EOS> SOS PRON VERB PRON EOS 'What are you doing?'
 - b. Was machst du SOS_PRON VERB_MID PRON_EOS 'What are you doing?'

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	○○○○○○●○	0	0	000000

Sentence markers results:

► Results for all POS n-gram models in line with experiment 1. → support for bare NPs, directive particles and particle 'so'.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	○○○○○○●○	O	0	000000

Sentence markers results:

- ► Results for all POS n-gram models in line with experiment 1. → support for bare NPs, directive particles and particle 'so'.
- POS bigram "SOS VERB" (e.g., <SOS> Sehe), POS trigrams "SOS VERB NOUN" (e.g., <SOS> War Deutscher), "SOS VERB ADV" (e.g., <SOS> Habe doch), "SOS VERB ADP" (e.g., <SOS> Ist bei) are some of the most predictive of Kiezdeutsch in the data.

 \rightarrow support verb-first declaratives phenomenon.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000		O	0	000000
	_					

Augmented POS tags results:

► Results for POS unigram model in line with experiment 1. → support for bare NPs, directive particles and particle 'so'.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000		O	0	000000
-		•				

Augmented POS tags results:

- ► Results for POS unigram model in line with experiment 1. → support for bare NPs, directive particles and particle 'so'.
- POS bigram and trigram models suffered from data sparsity and separation.

 \rightarrow data and models are insufficient to produce significant results.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000		0	000000
Conclusio	on					

This thesis filled a gap in the knowledge by performing a large-scale logistic regression analysis of Kiezdeutsch w.r.t. standard German.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000		0	000000
Conclusio	on					

- This thesis filled a gap in the knowledge by performing a large-scale logistic regression analysis of Kiezdeutsch w.r.t. standard German.
- Findings support well-known phenomena: bare NPs, directive particles, particle 'so', and verb-first.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000		0	000000
Conclusio	on					

- This thesis filled a gap in the knowledge by performing a large-scale logistic regression analysis of Kiezdeutsch w.r.t. standard German.
- Findings support well-known phenomena: bare NPs, directive particles, particle 'so', and verb-first.
- Findings suggest possible phenomena: increased use of negation, decreased use of relative clauses.

 \rightarrow further research is recommended to determine if these are Kiezdeutsch phenomena or latent properties of our corpora.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000		0	000000
Conclusio	on					

- This thesis filled a gap in the knowledge by performing a large-scale logistic regression analysis of Kiezdeutsch w.r.t. standard German.
- Findings support well-known phenomena: bare NPs, directive particles, particle 'so', and verb-first.
- Findings suggest possible phenomena: increased use of negation, decreased use of relative clauses.

 \rightarrow further research is recommended to determine if these are Kiezdeutsch phenomena or latent properties of our corpora.

 Adding positional information improves representation of syntactic phenomena given enough data.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000	0	•	000000

Conclusion

Thank you for listening. Questions?

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000	0	0	●○○○○○

Coding Categorical Variables

Flavor	C 1	C2	C3
Vanilla	0	0	0
Chocolate	1	0	0
Lemon	0	1	0
Other	0	0	1

Table: Dummy coding for the variable ice cream flavor with 4 groups. Vanilla is the reference level.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000	O	0	●○○○○○

Coding Categorical Variables

Flavor	C 1	C2	C3
Vanilla	0	0	0
Chocolate	1	0	0
Lemon	0	1	0
Other	0	0	1

Table: Dummy coding for the variable ice cream flavor with 4 groups. Vanilla is the reference level.

Flavor	C1	C2	C3
Vanilla	0.75	-0.25	-0.25
Chocolate	-0.25	0.75	-0.25
Lemon	-0.25	-0.25	0.75
Other	-0.25	-0.25	-0.25

Table: Sum contrast coding for the variable ice cream flavor with 4 groups. The grand mean is the reference level.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000	O	0	○●○○○○
Logistic	Regression	า				

- A logistic regression model is a type of Generalized Linear Model (GLM) which uses the logit (log-odds) for the link function f(Y).
- It uses the logistic/sigmoid function to calculate the probability of the outcome.

 \mathbf{o}

 \mathbf{o}

$$f(Y) = \alpha + \beta X$$

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000	O	0	○●○○○○
Logistic	Regression	า				

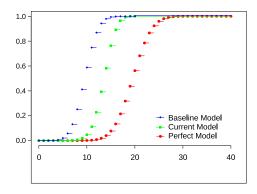
- A logistic regression model is a type of Generalized Linear Model (GLM) which uses the logit (log-odds) for the link function f(Y).
- It uses the logistic/sigmoid function to calculate the probability of the outcome.

$$f(Y) = \alpha + \beta X$$

$$f(Y) = \log \left[\frac{p}{(1-p)}\right]$$

where $p = P(Y = 1)$
 $P(Y = 1) = \frac{1}{1+e^{-\theta}}$
 $\theta = \alpha, \beta$ (model parameters)

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000	O	0	○○●○○○○


Comparing Models

Analysis of Variance (ANOVA) using likelihood ratio test (LRT) reveals if the more complex model is significantly better at capturing the data than the simpler model.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000	O	0	○○●○○○

Comparing Models

Analysis of Variance (ANOVA) using likelihood ratio test (LRT) reveals if the more complex model is significantly better at capturing the data than the simpler model.

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000	O	0	○○○●●●

References I

Freywald, U., Mayr, K., Özçelik, T., and Wiese, H. (2011). Kiezdeutsch as a multiethnolect. Ethnic styles of speaking in European metropolitan areas, pages 45–73. Fuchs, S., Krivokapic, J., and Jannedy, S. (2010). Prosodic boundaries in German: Final lengthening in spontaneous speech. The Journal of the Acoustical Society of America, 127(3):1851–1851. Heinz, B. (2002). Backchannel responses as strategic responses in bilingual speakers' conversations. Journal of Pragmatics. 35(7):1113–1142. Jannedy, S. (2010). The Usage and Distribution of so in Spontaneous Berlin Kiezdeutsch. ZASPiL Nr. 52–September 2010 Papers from the Linguistics Laboratory, 43. Kilgarriff, A. (2001). Comparing corpora.

International journal of corpus linguistics, 6(1):97–133.

Overview 000000000	Methodology 00 00000	Data 000000	Experiments 000000000	Conclusion 0	Discussion 0	Appendix ○○○●●●					
References II											
	Petrov, S., Das, D., and McDonald, R. (2012). A Universal Part-of-Speech Tagset. In Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12), Istanbul, Turkey. European Language Resources Association (ELRA).										
	Rehbein, I. and Schalowski, S. (2013). STTS goes Kiez–Experiments on Annotating and Tagging Urban Youth Language. The Journal for Language Technology and Computational Linguistics (JLCL).										
	Rehbein, I., Schalowski, S., and Wiese, H. (2014). The KiezDeutsch Korpus (KiDKo) Release 1.0. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), Reykjavik, Iceland.										
	Schiller, A., Teufel Guidelines für das Universität Stuttga	tagging deuts	cher textcorpora	· · · · ·							

Overview	Methodology	Data	Experiments	Conclusion	Discussion	Appendix
0000000000	00000	000000	000000000	O	0	○○○●●●

References III

Stevenson, P., Horner, K., Langer, N., and Reershemius, G. (2017). *The German-speaking world: A practical introduction to sociolinguistic issues.* Routledge, 3 edition.

Wiese, H. (2009).

Grammatical innovation in multiethnic urban europe: New linguistic practices among adolescents.

Lingua, 119(5):782-806.

Wiese, H., Freywald, U., and Mayr, K. (2009). Kiezdeutsch as a Test Case for the Interaction Between Grammar and Information Structure.

ISIS 12, Working Papers of the SFB 632 "Information Structure".

Wiese, H., Freywald, U., Schalowski, S., and Mayr, K. (2012). Das KiezDeutsch-Korpus. Spontansprachliche Daten Jugendlicher aus urbanen Wohngebieten. Deutsche Sprache. 40:97–1236.