

State-of-the-art models in lexical semantic change detection

January 19, 2021

Dominik Schlechtweg Supervisor: apl. Prof. Dr. Sabine Schulte im Walde Institute for Natural Language Processing, University of Stuttgart, Germany

Introduction

- **topic**: Lexical Semantic Change Detection (LSCD)
- ightarrow detect sense-divergences for a word over time in textual data
 - why interesting?
 - main use: support historical semanticists to find semantic changes (more and faster)
 - why text?
 - in many cases only historical language data available
 - relatively cheap resource
 - ▶ shown to encode parts of word meaning (Turney & Pantel, 2010)
 - what is the current state-of-the-art?

Tasks

- SemEval 2020 Task 1 on Unsupervised Lexical Semantic Change Detection (Schlechtweg, McGillivray, Hengchen, Dubossarsky, & Tahmasebi, 2020)¹
- comparison of two time periods t₁ and t₂
- two tasks:
 - 1. **Binary classification**: for a set of target words, decide which words lost or gained senses between t_1 and t_2 , and which ones did not.
 - 2. **Ranking**: rank a set of target words according to their sense-frequency divergence between t_1 and t_2 .
- defined on word sense frequency distributions

¹https://languagechange.org/semeval/

Sense Frequency Distributions

	t1			t2		
Senses	Chamber	Biology	Phone	Chamber	Biology	Phone
# uses	12	18	0	1	11	18

Figure 1: An example of a sense frequency distribution for the word *cell* in two time periods.

Data

- for each language
 - 2 corpora (one for each time period)
 - set of target words
 - binary and graded labels for target words
 - $\rightarrow\,$ derived from sense-frequency distributions
 - $\rightarrow\,$ derived from graded use pair judgments of human annotators

Corpora

	t_1	<i>t</i> ₂
English	CCOHA 1810–1860	CCOHA 1960-2010
German	DTA 1800–1899	BZ+ND 1946-1990
Latin	LatinISE -200–0	LatinISE 0–2000
Swedish	Kubhist 1790–1830	Kubhist 1895–1903

Table 1: Time-defined subcorpora for each language.

Target words

- 100–200 changing words selected from etymological dictionaries (OED, 2009; Paul, 2002; Svenska Akademien, 2009)
- adding of control words with similar frequency properties
- sample 100 uses (30 for Latin) of each word per time period

Labels

- obtain SFDs of corpus samples by annotation
- ► graded word sense annotation (Erk, McCarthy, & Gaylord, 2013)

Diachronic Data

. . .

- (1) 1830 but I am bound and thrown into a dark prison **cell** in Newgate jail.
- (2) 1851 I had to destroy all the letters in my **cell** when I left the prison.
- (3) 1990 I call it my prison cell, this dark chamber.
- (4) 2006 She grabbed her **cell** and started a call as we headed toward the door.

Use Pair Combinations

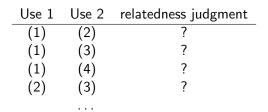


Table 2: Use Pair Combinations.

Use Pair Judgments

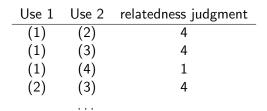


Table 3: Use Pair Combinations.

Scale

- 4: Identical
- ↑ 3: Closely Related
 - 2: Distantly Related
 - 1: Unrelated
 - 0: Cannot decide

Word Usage Graphs (WUGs)

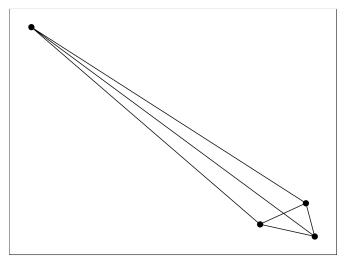


Figure 2: Graph visualization four uses of cell.

Word Usage Graphs (WUGs)

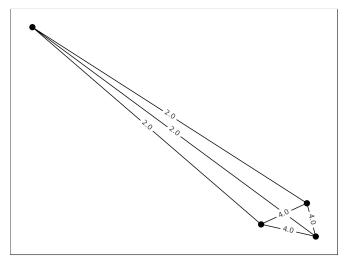


Figure 3: Graph visualization four uses of cell.

Clustering

- correlation clustering (Bansal, Blum, & Chawla, 2004)
- optimization criterion: reduce (weighted) number of cluster-edge conflicts

$$L(C) = \sum_{e \in \phi_{E,C}} W(e) + \sum_{e \in \psi_{E,C}} |W(e)|$$
(1)

Clustering

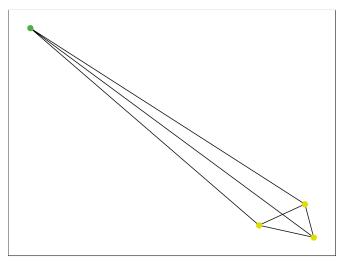


Figure 4: Graph visualization for uses of *cell* D = (3, 1).

Clustering

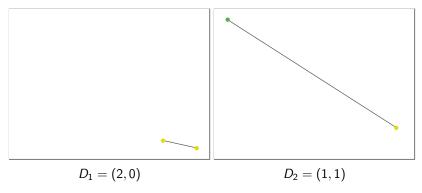
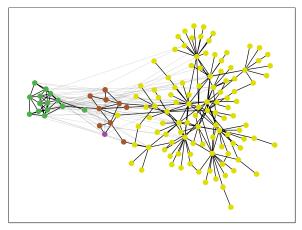


Figure 5: Graph visualization for uses of cell. B(w) = 1 and G(w) = 0.5



D = (110, 14, 9, 1)

Figure 6: Usage graph of Swedish *ledning*.

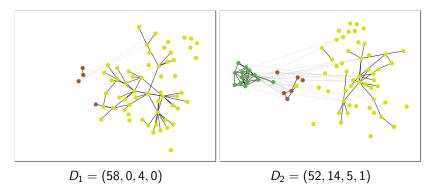
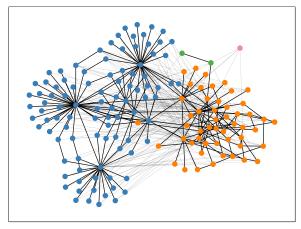
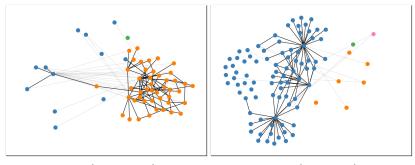


Figure 7: Usage graph of Swedish *ledning*. B(w) = 1 and G(w) = 0.34.



D = (97, 51, 1, 2)

Figure 8: Usage graph of German *Eintagsfliege*.



 $D_1 = (12, 45, 0, 1)$ $D_2 = (85, 6, 1, 1)$

Figure 9: Usage graph of German *Eintagsfliege*. B(w) = 0 and G(w) = 0.66.

- unsupervised (no labeled training data)
- distributional

(Harris, 1954)

- vector space models
- mostly bag-of-words-based
- most successful ones are neural language models

Type-based VSMs

- do not model senses
- one average vector per word
- composed by
 - 1. semantic representation per word (type vector)
 - 2. alignment
 - 3. measure

Simple Model

co-occurrence count model

Corpus

. . .

- (1) 1830 but I am bound and thrown into a dark prison **cell** in Newgate jail.
- (2) 1851 I had to destroy all the letters in my **cell** when I left the prison.
- (3) 1990 I call it my prison **cell**, this dark chamber.
- (4) 2006 She received a call on her **cell** as we headed toward the door.

Preprocess

. . .

- (1) 1830 bound thrown dark prison cell jail
- (2) 1851 destroy letters cell left prison
- (3) 1990 call prison cell dark chamber
- (4) 2006 received call cell headed door

Finding Context (Bags of Words)

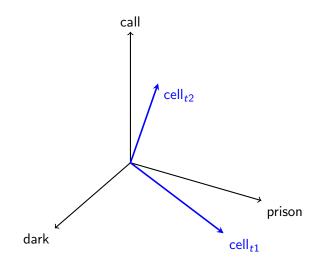
. . .

(1)1830 bound thrown dark prison cell jail (2)1851

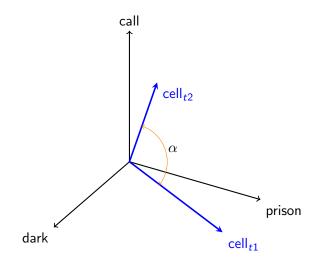
destroy letters cell left prison

- (3)1990 call prison cell dark chamber (4)
 - 2006 received call cell headed door

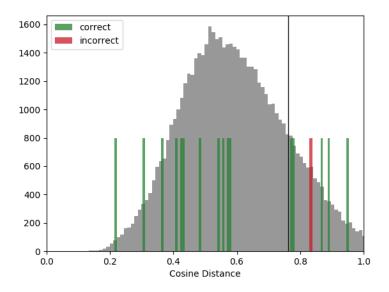
Vector Space Representation



Cosine Distance



Thresholding

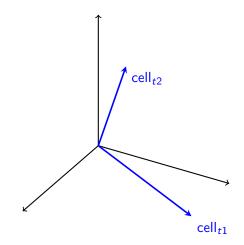


Best Models

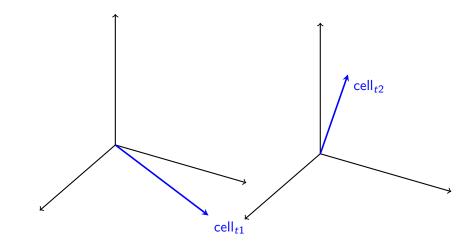
- neural-network-based language models
- trained on context word prediction
- compresses contextual information into low-dimensional vectors
- ► SGNS+OP+CD (Hamilton, Leskovec, & Jurafsky, 2016)
 - Semantic Representation: Skip-gram with Negative Sampling (Mikolov, Chen, Corrado, & Dean, 2013; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013)
 - 2. Alignment: Orthogonal Procrustes
- (Schönemann, 1966)
- 3. Change Measure: Cosine Distance

(Salton & McGill, 1983)

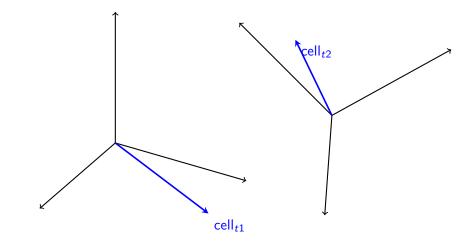
Non-interpretable dimensions



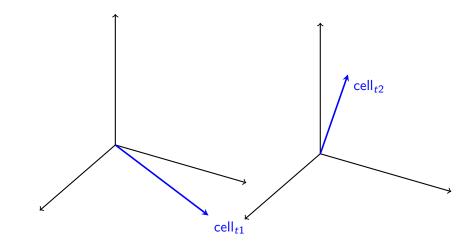
Alignment



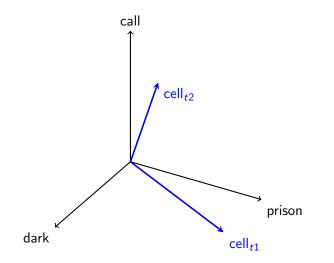
Alignment



Alignment



Common Space



Token-based VSMs

word sense discrimination

(Schütze, 1998)

- model the human measurement process (one meaning per use, semantic proximity, clustering)
- one vector per use
- composed by
 - 1. semantic representation per word use (token vector)
 - 2. (clustering)
 - 3. change measure

Simple Model

co-occurrence count model

Finding Context (Bags of Words)

1830 bound thrown dark prison cell jail
1851

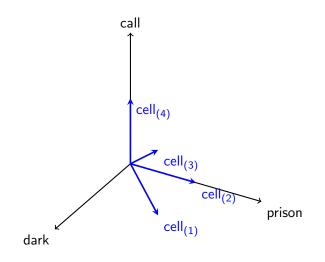
destroy letters cell left prison

- (3) 1990 (4) 2006 call prison cell dark chamber
- (4) 2006

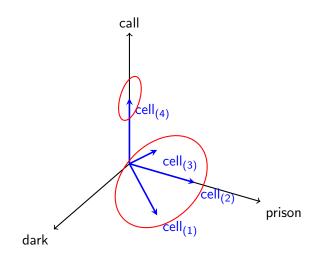
. . .

received call cell headed door

Vector Space Representation

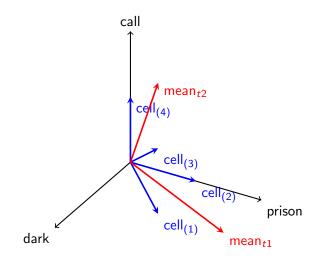


Clustering

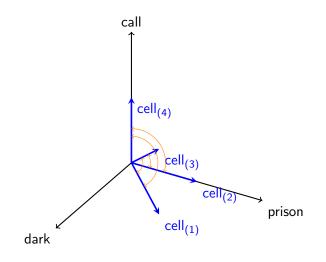


Sense Frequency Distribution

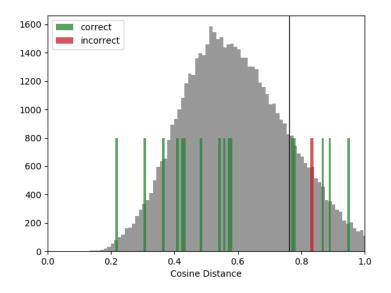
COS



APD



Thresholding



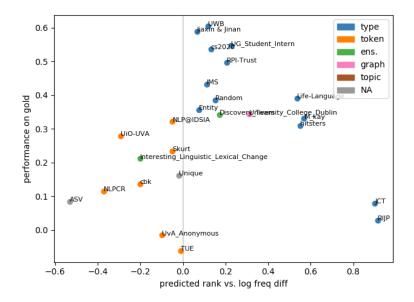
Best Models

- neural-network-based language models
- contextualized embeddings (Devlin, Chang, Lee, & Toutanova, 2019; Peters et al., 2018)
- trained on context-sensitive context word prediction
- token representations in multiple layers
- pre-trained on modern data
- or perform type embeddings on various modern downstream tasks
- we use
 - 1. Semantic Representation: BERT (Peters et al., 2018)
 - Change Measure: COS/APD/APD_{norm} (Beck, 2020; Kutuzov & Giulianelli, 2020)

Evaluation

- we now compare the human and computational measurements of change on our data sets
- two tasks:
 - 1. Binary classification: for a set of target words, decide which words lost or gained senses between t_1 and t_2 , and which ones did not.
 - 2. **Ranking**: rank a set of target words according to their sense-frequency divergence between t_1 and t_2 .

SemEval Results (Ranking)



Summary

- token embeddings are dominated by type embeddings
- SGNS+OP+CD is the overall dominant model
- averaging token embeddings works much better than clustering
- models show medium to high performance (depending on the task and tuning data)
- $\rightarrow\,$ currently it is better not to model the human annotation process

BERT performance on German

	DE	prep	Reference
BERT+APD _{norm}	.41	lemma	(Beck, 2020)
BERT+CL+JSD	.53	lemma	(Martinc, Montariol, Zosa, & Pivovarova, 2020)
BERT+COS	.58	lemma	(Kutuzov & Giulianelli, 2020)

Table 4: Token embedding performance on ranking task.

What blocks BERT's performance?

- what do clusters reflect?
 - 1. sentence position
 - 2. number of proper names

(Martinc et al., 2020)

- 3. corpus
- 4. word form

joint work with Severin Laicher and Sinan Kurtyigit

Cluster bias

	1	12	1+12	1+2+3+4	9+10+11+12
Position Influence	.631	.497	.629	.633	.512
Position Random	.384	.383	.383	.382	.383
Position Baseline	.712	.712	.712	.712	.712
Name Influence	.535	.476	.538	.537	.485
Name Random	.378	.378	.375	.381	.379
Name Baseline	.602	.602	.602	.602	.602
Corpora Influence	.538	.566	.550	.547	.564
Corpora Random	.531	.527	.526	.531	.528
Corpora Baseline	.522	.522	.522	.522	.522
Form Influence	.945	.667	.917	.922	.670
Form Random	.478	.481	.481	.483	.477
Form Baseline	.611	.611	.611	.611	.611

Table 5: ACC scores for influencing factors: English BERT-cased.

Cluster bias

	1	12	1+12	1+2+3+4	9+10+11+12
Position Influence	.549	.586	.582	.571	.590
Position Random	.397	.403	.401	.402	.396
Position Baseline	.670	.670	.670	.670	.670
Corpora Influence	.613	.669	.645	.633	.665
Corpora Random	.529	.528	.525	.525	.530
Corpora Baseline	.560	.560	.560	.560	.560
Form Influence	.775	.705	.774	.770	.722
Form Random	.278	.278	.276	.282	.285
Form Baseline	.490	.490	.490	.490	.490

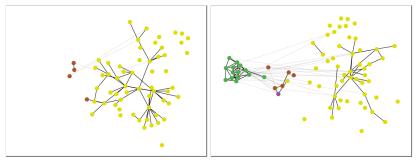
Table 6: ACC scores for influencing factors: German BERT-cased.

Tuning

	DE	prep	Reference
BERT+APD _{norm}	.41	lemma	(Beck, 2020)
BERT+CL+JSD	.53	lemma	(Martinc et al., 2020)
BERT+COS (12)	.58	lemma	(Kutuzov & Giulianelli, 2020)
BERT+COS (9-12)	.47	token	
BERT+COS (9-12)	.69	lemma	
BERT+COS (9-12)	.72	toklem	
ELMo+COS (12)	.74	lemma	(Kutuzov & Giulianelli, 2020)
BERT+APD _{norm} (1+12)	.83	toklem	(uses only)

Table 7: Token embedding tuning on ranking task.

Polysemy



 $D_1 = (58, 0, 4, 0)$ $D_2 = (52, 14, 5, 1)$

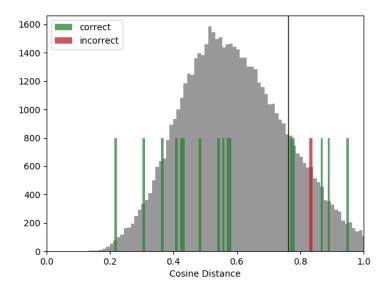
Figure 14: Usage graph of Swedish ledning.

Polysemy

	EN	DE	SV
BERT+APD	.55 /.45	.69/.72	.65 /.60
BERT+APD _{norm}	.49 /.41	.74/.83	.50 /.48
BERT+COS	.09/.19	.60/.72	.12 /.08

Table 8: Correlation of true polysemy in t_1 vs. true change with predicted change scores by different models (toklem, 1+12).

Predict



Predict

	DE	Predict
BERT+COS	.74	.62
SGNS+OP+CD	.74	.75

Table 9: Results of prediction on German SemEval data for best type and token model (toklem, 1+12).

Conclusion

- token and type embeddings perform similarly when tuned on the test data
- Immatizing only the target word for BERT strongly improves performance
- BERT is strongly influenced by surface form of target word (especially in lower layers)
- BERT is moderately influenced by corpus bias
- polysemy often explains BERT performance better than change
- polysemy-controlled change measures still suffer from this
- COS is least influenced by polysemy
- type embeddings outperform embeddings clearly on a prediction task

Future Research

- clustering
- supervised LSCD
 - learn binary classifier on (e.g. concatenation) of vectors
 - ▶ follow hypernymy detection (Shwartz, Santus, & Schlechtweg, 2017)
 - problem: training data

Bibliography I

- Bansal, N., Blum, A., & Chawla, S. (2004). Correlation clustering. Machine Learning, 56(1-3), 89–113. doi: 10.1023/B:MACH.0000033116.57574.95
- Beck, C. (2020). DiaSense at SemEval-2020 Task 1: Modeling sense change via pre-trained BERT embeddings. In Proceedings of the 14th international workshop on semantic evaluation. Barcelona, Spain: Association for Computational Linguistics.
- Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019, June). BERT: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the north American chapter of the association for computational linguistics: Human language technologies, volume 1 (long and short papers)* (pp. 4171–4186). Minneapolis, Minnesota: Association for Computational Linguistics. doi: 10.18653/v1/NI9-1423
- Erk, K., McCarthy, D., & Gaylord, N. (2013). Measuring word meaning in context. Computational Linguistics, 39(3), 511–554.
- Hamilton, W. L., Leskovec, J., & Jurafsky, D. (2016). Diachronic word embeddings reveal statistical laws of semantic change. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1489–1501). Berlin, Germany.
- Harris, Z. S. (1954, 08). Distributional structure. Word, 10, 146-162.
- Kutuzov, A., & Giulianelli, M. (2020). UiO-UvA at SemEval-2020 Task 1: Contextualised Embeddings for Lexical Semantic Change Detection. In Proceedings of the 14th international workshop on semantic evaluation. Barcelona, Spain: Association for Computational Linguistics.
- Martinc, M., Montariol, S., Zosa, E., & Pivovarova, L. (2020). Discovery Team at SemEval-2020 Task 1: Context-sensitive Embeddings not Always Better Than Static for Semantic Change Detection. In Proceedings of the 14th international workshop on semantic evaluation. Barcelona, Spain: Association for Computational Linguistics.
- Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. In Y. Bengio & Y. LeCun (Eds.). Ist international conference on learning representations, ICLR 2013, scottSade, arizona, usa, may 2-4, 2013, workshop track proceedings.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In *Proceedings of NIPS*.
- OED. (2009). Oxford english dictionary. Oxford University Press.
- Paul, H. (2002). Deutsches Wörterbuch: Bedeutungsgeschichte und Aufbau unseres Wortschatzes (10. ed.). Tübingen: Niemeyer.

Bibliography II

- Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. In *Proceedings of the 2018 conference of the north american chapter of the association for computational linguistics: Human language technologies* (pp. 2227–2237). New Orleans, LA, USA.
- Salton, G., & McGill, M. J. (1983). Introduction to Modern Information Retrieval. New York: McGraw Hill Book Company.
- Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., & Tahmasebi, N. (2020). SemEval-2020 task 1: Unsupervised Lexical Semantic Change Detection. In Proceedings of the 14th International Workshop on Semantic Evaluation. Barcelona, Spain: Association for Computational Linguistics.
- Schlechtweg, D., Schulte im Walde, S., & Eckmann, S. (2018). Diachronic Usage Relatedness (DURel): A framework for the annotation of lexical semantic change. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 169–174). New Orleans, Louisiana.
- Schönemann, P. H. (1966, Mar 01). A generalized solution of the orthogonal procrustes problem. Psychometrika, 31(1), 1–10.
- Schütze, H. (1998, March). Automatic word sense discrimination. Computational Linguistics, 24(1), 97-123.
- Shwartz, V., Santus, E., & Schlechtweg, D. (2017). Hypernyms under siege: Linguistically-motivated artillery for hypernymy detection. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain (pp. 65–75).
- Svenska Akademien. (2009). Contemporary dictionary of the Swedish Academy. The changed words are extracted from a database managed by the research group that develops the Contemporary dictionary.
- Turney, P. D., & Pantel, P. (2010, January). From frequency to meaning: Vector space models of semantics. J. Artif. Int. Res., 37(1), 141–188.