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Introduction

I topic: Lexical Semantic Change Detection (LSCD)

→ detect sense-divergences for a word over time in textual data
I why interesting?

I main use: support historical semanticists to find semantic
changes (more and faster)

I why text?
I in many cases only historical language data available
I relatively cheap resource
I shown to encode parts of word meaning (Turney & Pantel, 2010)

I what is the current state-of-the-art?
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Tasks

I SemEval 2020 Task 1 on Unsupervised Lexical Semantic
Change Detection (Schlechtweg, McGillivray, Hengchen, Dubossarsky, &

Tahmasebi, 2020)1

I comparison of two time periods t1 and t2

I two tasks:

1. Binary classification: for a set of target words, decide which
words lost or gained senses between t1 and t2, and which ones
did not.

2. Ranking: rank a set of target words according to their
sense-frequency divergence between t1 and t2.

I defined on word sense frequency distributions

1https://languagechange.org/semeval/

https://languagechange.org/semeval/
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Sense Frequency Distributions

Figure 1: An example of a sense frequency distribution for the word cell
in two time periods.
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Data

I for each language
I 2 corpora (one for each time period)
I set of target words
I binary and graded labels for target words

→ derived from sense-frequency distributions
→ derived from graded use pair judgments of human annotators
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Corpora

t1 t2

English CCOHA 1810–1860 CCOHA 1960–2010
German DTA 1800–1899 BZ+ND 1946–1990
Latin LatinISE -200–0 LatinISE 0–2000
Swedish Kubhist 1790–1830 Kubhist 1895–1903

Table 1: Time-defined subcorpora for each language.
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Target words

I 100–200 changing words selected from etymological
dictionaries (OED, 2009; Paul, 2002; Svenska Akademien,
2009)

I adding of control words with similar frequency properties

I sample 100 uses (30 for Latin) of each word per time period
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Labels

I obtain SFDs of corpus samples by annotation

I graded word sense annotation (Erk, McCarthy, & Gaylord, 2013)
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Diachronic Data

(1) 1830 but I am bound and thrown into a dark prison cell
in Newgate jail.

(2) 1851 I had to destroy all the letters in my cell when I
left the prison.

. . .
(3) 1990 I call it my prison cell, this dark chamber.
(4) 2006 She grabbed her cell and started a call as we

headed toward the door.
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Use Pair Combinations

Use 1 Use 2 relatedness judgment

(1) (2) ?
(1) (3) ?
(1) (4) ?
(2) (3) ?

. . .

Table 2: Use Pair Combinations.
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Use Pair Judgments

Use 1 Use 2 relatedness judgment

(1) (2) 4
(1) (3) 4
(1) (4) 1
(2) (3) 4

. . .

Table 3: Use Pair Combinations.
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Scale

x
4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

0: Cannot decide
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Word Usage Graphs (WUGs)

Figure 2: Graph visualization four uses of cell.
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Word Usage Graphs (WUGs)

Figure 3: Graph visualization four uses of cell.



15

Clustering

I correlation clustering (Bansal, Blum, & Chawla, 2004)

I optimization criterion: reduce (weighted) number of
cluster-edge conflicts

L(C ) =
∑

e∈φE ,C

W (e) +
∑

e∈ψE ,C

|W (e)| (1)
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Clustering

Figure 4: Graph visualization for uses of cell D = (3, 1).
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Clustering

D1 = (2, 0) D2 = (1, 1)

Figure 5: Graph visualization for uses of cell. B(w) = 1 and G (w) = 0.5
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SemEval WUG

D = (110, 14, 9, 1)

Figure 6: Usage graph of Swedish ledning.
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SemEval WUG

D1 = (58, 0, 4, 0) D2 = (52, 14, 5, 1)

Figure 7: Usage graph of Swedish ledning. B(w) = 1 and G (w) = 0.34.
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SemEval WUG

D = (97, 51, 1, 2)

Figure 8: Usage graph of German Eintagsfliege.
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SemEval WUG

D1 = (12, 45, 0, 1) D2 = (85, 6, 1, 1)

Figure 9: Usage graph of German Eintagsfliege. B(w) = 0 and
G (w) = 0.66.
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Models

I unsupervised (no labeled training data)

I distributional (Harris, 1954)

I vector space models

I mostly bag-of-words-based

I most successful ones are neural language models
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Type-based VSMs

I do not model senses

I one average vector per word
I composed by

1. semantic representation per word (type vector)
2. alignment
3. measure
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Simple Model

I co-occurrence count model
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Corpus

(1) 1830 but I am bound and thrown into a dark prison cell
in Newgate jail.

(2) 1851 I had to destroy all the letters in my cell when I
left the prison.

. . .
(3) 1990 I call it my prison cell, this dark chamber.
(4) 2006 She received a call on her cell as we headed toward

the door.
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Preprocess

(1) 1830 bound thrown dark prison cell jail
(2) 1851 destroy letters cell left prison

. . .
(3) 1990 call prison cell dark chamber
(4) 2006 received call cell headed door
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Finding Context (Bags of Words)

(1) 1830 bound thrown dark prison cell jail
(2) 1851

destroy letters cell left prison
. . .

(3) 1990
call prison cell dark chamber

(4) 2006
received call cell headed door
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Vector Space Representation
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Cosine Distance

dark

prison

call

cellt1

cellt2

α



30

Thresholding
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Best Models

I neural-network-based language models

I trained on context word prediction

I compresses contextual information into low-dimensional
vectors

I SGNS+OP+CD (Hamilton, Leskovec, & Jurafsky, 2016)

1. Semantic Representation: Skip-gram with Negative
Sampling (Mikolov, Chen, Corrado, & Dean, 2013; Mikolov, Sutskever,

Chen, Corrado, & Dean, 2013)

2. Alignment: Orthogonal Procrustes (Schönemann, 1966)

3. Change Measure: Cosine Distance (Salton & McGill, 1983)
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Non-interpretable dimensions

cellt1

cellt2
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Alignment

cellt1

cellt2



34

Alignment
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Alignment
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Common Space
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Token-based VSMs

I word sense discrimination (Schütze, 1998)

I model the human measurement process (one meaning per use,
semantic proximity, clustering)

I one vector per use
I composed by

1. semantic representation per word use (token vector)
2. (clustering)
3. change measure
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Simple Model

I co-occurrence count model
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Finding Context (Bags of Words)

(1) 1830 bound thrown dark prison cell jail
(2) 1851

destroy letters cell left prison
. . .

(3) 1990
call prison cell dark chamber

(4) 2006
received call cell headed door
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Vector Space Representation
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Clustering
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Sense Frequency Distribution

t1 t2

Senses Chamber Phone Chamber Phone
# uses 2 0 1 1
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COS
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Thresholding
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Best Models

I neural-network-based language models

I contextualized embeddings (Devlin, Chang, Lee, & Toutanova, 2019;

Peters et al., 2018)

I trained on context-sensitive context word prediction

I token representations in multiple layers

I pre-trained on modern data

I or perform type embeddings on various modern downstream
tasks

I we use

1. Semantic Representation: BERT (Peters et al., 2018)

2. Change Measure: COS/APD/APDnorm (Beck, 2020; Kutuzov &

Giulianelli, 2020)
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Evaluation

I we now compare the human and computational measurements
of change on our data sets

I two tasks:

1. Binary classification: for a set of target words, decide which
words lost or gained senses between t1 and t2, and which ones
did not.

2. Ranking: rank a set of target words according to their
sense-frequency divergence between t1 and t2.



48

SemEval Results (Ranking)
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Summary

I token embeddings are dominated by type embeddings

I SGNS+OP+CD is the overall dominant model

I averaging token embeddings works much better than
clustering

I models show medium to high performance (depending on the
task and tuning data)

→ currently it is better not to model the human annotation
process
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BERT performance on German

DE prep Reference

BERT+APDnorm .41 lemma (Beck, 2020)

BERT+CL+JSD .53 lemma (Martinc, Montariol, Zosa, & Pivovarova, 2020)

BERT+COS .58 lemma (Kutuzov & Giulianelli, 2020)

Table 4: Token embedding performance on ranking task.
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What blocks BERT’s performance?

I what do clusters reflect?

1. sentence position
2. number of proper names (Martinc et al., 2020)

3. corpus
4. word form

I joint work with Severin Laicher and Sinan Kurtyigit
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Cluster bias

1 12 1+12 1+2+3+4 9+10+11+12
Position Influence .631 .497 .629 .633 .512
Position Random .384 .383 .383 .382 .383
Position Baseline .712 .712 .712 .712 .712

Name Influence .535 .476 .538 .537 .485
Name Random .378 .378 .375 .381 .379
Name Baseline .602 .602 .602 .602 .602

Corpora Influence .538 .566 .550 .547 .564
Corpora Random .531 .527 .526 .531 .528
Corpora Baseline .522 .522 .522 .522 .522

Form Influence .945 .667 .917 .922 .670
Form Random .478 .481 .481 .483 .477
Form Baseline .611 .611 .611 .611 .611

Table 5: ACC scores for influencing factors: English BERT-cased.
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Cluster bias

1 12 1+12 1+2+3+4 9+10+11+12
Position Influence .549 .586 .582 .571 .590
Position Random .397 .403 .401 .402 .396
Position Baseline .670 .670 .670 .670 .670

Corpora Influence .613 .669 .645 .633 .665
Corpora Random .529 .528 .525 .525 .530
Corpora Baseline .560 .560 .560 .560 .560

Form Influence .775 .705 .774 .770 .722
Form Random .278 .278 .276 .282 .285
Form Baseline .490 .490 .490 .490 .490

Table 6: ACC scores for influencing factors: German BERT-cased.
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Tuning

DE prep Reference
BERT+APDnorm .41 lemma (Beck, 2020)

BERT+CL+JSD .53 lemma (Martinc et al., 2020)

BERT+COS (12) .58 lemma (Kutuzov & Giulianelli, 2020)

BERT+COS (9-12) .47 token
BERT+COS (9-12) .69 lemma
BERT+COS (9-12) .72 toklem
ELMo+COS (12) .74 lemma (Kutuzov & Giulianelli, 2020)

BERT+APDnorm (1+12) .83 toklem (uses only)

Table 7: Token embedding tuning on ranking task.
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Polysemy

D1 = (58, 0, 4, 0) D2 = (52, 14, 5, 1)

Figure 14: Usage graph of Swedish ledning.
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Polysemy

EN DE SV

BERT+APD .55/.45 .69/.72 .65/.60
BERT+APDnorm .49/.41 .74/.83 .50/.48
BERT+COS .09/.19 .60/.72 .12/.08

Table 8: Correlation of true polysemy in t1 vs. true change with predicted
change scores by different models (toklem, 1+12).
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Predict



58

Predict

DE Predict

BERT+COS .74 .62
SGNS+OP+CD .74 .75

Table 9: Results of prediction on German SemEval data for best type and
token model (toklem, 1+12).
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Conclusion

I token and type embeddings perform similarly when tuned on
the test data

I lemmatizing only the target word for BERT strongly improves
performance

I BERT is strongly influenced by surface form of target word
(especially in lower layers)

I BERT is moderately influenced by corpus bias

I polysemy often explains BERT performance better than
change

I polysemy-controlled change measures still suffer from this

I COS is least influenced by polysemy

I type embeddings outperform embeddings clearly on a
prediction task
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Future Research

I clustering
I supervised LSCD

I learn binary classifier on (e.g. concatenation) of vectors
I follow hypernymy detection (Shwartz, Santus, & Schlechtweg, 2017)

I problem: training data
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