Lexical Semantic Change Discovery

July 7, 2021

Sinan Kurtyigit♠ Maike Park♡ Dominik Schlechtweg♠
Jonas Kuhn♠ Sabine Schulte im Walde♠

♠ Institute for Natural Language Processing, University of Stuttgart, Germany
♡ Leibniz Institute for the German Language, University of Mannheim, Germany
Most work in Lexical Semantic Change Detection (LSCD) focuses on developing and analysing models.

Limited focus on discovering novel instances of semantic change.

We propose a **shift of focus to change discovery**.
Introduction

In this work we
▶ use high quality models to predict novel semantic changes.
▶ validate the model predictions through human annotation.
▶ discover novel instances of semantic changes.
▶ evaluate the usability of the approach from a lexicographers viewpoint.
▶ provide a highly automated framework.¹

¹The code is available at https://github.com/seinan9/LSCDiscovery
Lexical Semantic Change Discovery

Given a diachronic corpus pair \((C_1, C_2)\), decide for the intersection of their vocabularies which words lost or gained sense(s) between \(C_1\) and \(C_2\).
Discovery Process

Given two corpora C_1 and C_2 from two time periods:

1. Generate word embeddings for words in vocabulary intersection.
2. Measure differences between word embeddings from C_1 and C_2.
3. Calculate a threshold. Mark words with a value greater than or equal to this threshold as changing.
4. Filter out undesirable words.
Two approaches to generate graded values:

1. Type-based: **SGNS+OP+CD**
2. Token-based: **BERT+APD/COS**
Generating word embeddings is expensive for token-based approach.

- Only consider a sample for the discovery.\(^2\)
- Here a population of 500 words is used for both approaches.
- Population can be much larger in practice.

\(^2\)This limitation is only necessary so we can experiment with different parameters.
Thresholding

According to the graded values a threshold is calculated:

\[TH = \mu + t \cdot \sigma, \]

where \(\mu \) is the mean and \(\sigma \) standard deviation. Words whose graded values are greater than or equal to this threshold, are labeled as changing.
Filtering

Two filters are provided to remove undesirable words:

1. A lemma-level filter.
2. A usage-level filter.
Annotation

The model predictions are validated by human annotation:

1. Usages are uploaded to the DURel interface for annotation and visualization.\(^3\)

2. Annotators judge the semantic relatedness of pairs of word usages.\(^4\)

\[\begin{array}{c}
4: \text{Identical} \\
3: \text{Closely Related} \\
2: \text{Distantly Related} \\
1: \text{Unrelated}
\end{array}\]

\textbf{Table 1:} DURel relatedness scale.

\(^3\)https://www.ims.uni-stuttgart.de/data/durel-tool

\(^4\)https://www.ims.uni-stuttgart.de/data/wugs
Word Usage Graphs (WUGs)

Figure 1: Word Usage Graph of German *Aufkommen* (left), subgraphs for first time period C_1 (middle) and for second time period C_2 (right). **black**/*gray* lines indicate **high**/*low* edge weights.
Data

German data set provided by SemEval-2020 shared task:

- 48 target words.
- Binary und graded gold data for evaluation and tuning.
Solve the SemEval-2020 subtasks to find good parameters:

1. Subtask 2 is solved to optimize the graded value predictions.
2. Afterwards, Subtask 1 is solved to find the best-performing threshold
3. The best parameter configuration for both models are then used to discover changing words.
Predictions

Three sets of predictions:

1. Discovered with type-based approach.
2. Discovered with token-based approach.
3. Randomly sampled from population.

All three sets are annotated and evaluated separately.
Results

<table>
<thead>
<tr>
<th>Approach</th>
<th>\sum</th>
<th>+</th>
<th>-</th>
<th>$F_{0.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>type-based</td>
<td>27</td>
<td>18 / 67%</td>
<td>9 / 33%</td>
<td>.714</td>
</tr>
<tr>
<td>token-based</td>
<td>30</td>
<td>17 / 57%</td>
<td>13 / 43%</td>
<td>.620</td>
</tr>
<tr>
<td>random</td>
<td>30</td>
<td>10 / 34%</td>
<td>20 / 66%</td>
<td>.349</td>
</tr>
</tbody>
</table>

Table 2: Number of total/correct/false predictions and $F_{0.5}$-performance for type-based approach, token-based approach and random baseline.
1. **Context Change**: Words where the context in the usages shifts between C_1 and C_2, e.g., *Angriffswaffe* (‘offensive weapon’), *aussterben* (‘to die out’) and *Königreich* (‘kingdom’).

2. **Context Variety**: Word that can be used in a large variety of contexts, e.g., *neunjährig* (‘9-year-old’), *vorjährig* (‘of the previous year’) and *Bemerken* (‘notice’).
Figure 2: Word Usage Graph of German *Anriffswaffe* (left), subgraphs for first time period C_1 (middle) and for second time period C_2 (right).
Lexicographical Evaluation

- Annotation process can ensure more objective analysis of corpus data.
- Visualization is helpful for analyzing purposes.
- Model predictions are promising candidates.
Records of Novel Senses

Comparing 21 correct predictions to existing dictionary contents:

- In most cases, all senses identified by the system are included in a dictionary.

- In 4 cases, at least one novel sense is not included.
A Novel Sense

1. Man sieht also, daß die Striche nach den Tausenden, nach den Hunderten und nach den Zehnern gesetzt werden. ‘So you can see that the strokes are placed after the thousands, after the hundreds, and after the tens.’

2. Fußball-Toto: Kein Elfer; 6 Zehner mit je 3778 Mark; 152 Neuner mit je 298 Mark. ‘Soccer lottery: No eleven; 6 tens with 3778 marks each; 152 nines with 298 marks each.’
Figure 3: Word Usage Graph of German Zehner (left), subgraphs for first time period C_1 (middle) and for second time period C_2 (right).
Conclusion

▶ We used two LSCD approaches to discover semantic changes in a German corpus pair.
▶ Both approaches were able to discover semantic changes.
▶ Validated results through human annotation.
▶ Provided convenient visualization through Word Usage Graphs.
▶ Further validated the usefulness from a lexicographers viewpoint.
Thank you for your attention.