LSCDiscovery: A shared task on semantic change discovery and detection in Spanish

Frank D. Zamora-Reina ¹ Felipe Bravo-Marquez ¹ Dominik Schlechtweg ²

¹Department of Computer Science, University of Chile, IMFD & CENIA

²Institute for Natural Language Processing, University of Stuttgart

May 2022

1/24

- Graded Change Discovery,
- e Binary Change Detection

Given a diachronic corpus pair C1 and C2, rank the intersection of their (content-word) vocabularies according to their degree of change between C1 and C2.

Given a target word w and two sets of its usages U1 and U2, decide whether w lost or gained senses from U1 to U2, or not.

- discovery introduces additional difficulties for models
 - a large number of predictions is required
 - target word are not preselected, balanced or cleaned

- Graded Change Detection
- Sense Gain Detection
- Loss Gain Detection
- COMPARE

Graded Change Detection

- similar to Graded Discovery
- the only difference was the public target words corresponded exactly to the hidden words on which we evaluated

Sense Gain Detection

- similar to Binary Change Detection
- only words which gained (not lost) senses receive label 1.

Sense Loss Detection

- similar to Binary Change
- only words which lost (not gained) senses received label 1.

COMPARE

- average of human semantic proximity judgments of usage pairs
- approximation of JSD (Graded Change)

Corpus	Time period	Tokens
Old corpus (C1)	1810-1906	$\sim 13M$
Modern corpus (C2)	1994–2020	$\sim 22M$

Table: Sizes of both corpora.

LSCDiscovery: Previous Shared Tasks

- SemEval 2020 Task 1
- DIACR-Ita
- RuShiftEval

э

Shared Task	Target words (dev/testing)	Task
SemEval 2020 Task 1	0/156	Binary Change/Graded Change
DIACR-Ita	0/18	Binary Change Detection
RuShiftEval	12/99	COMPARE

- public target words \rightarrow 4385 (only evaluation phase 1)
- hidden target words \rightarrow 80
 - $\bullet \ \ development \ set \rightarrow 20$
 - $\bullet~\mbox{evaluation set} \to 60$
- exact annotated target word usages were provided

LSCDiscovery: Annotations

- 12 annotators
- each target word was sampled |U₁| = |U₂| = 20 usages (sentences) per subcorpus (C₁, C₂).
- \sim 62K judgments
 - 12k judgments for development
 - 38k judgments for evaluation
 - 12k judgments for discarded (due to the low agreement)

LSCDiscovery: Annotations

G, D = (23, 17) $G_1, D_1 = (20, 0)$ $G_2, D_2 = (3, 17)$

Figure: Word Usage Graph of Spanish servidor.

Graded Change Discovery

• Spearman correlation

э

COMPARE

• Spearman correlation

Binary Change Detection

- F1 (main metric)
- Precision
- Recall

Sense Gain Detection

- F1
- Precision
- Recall

Sense Loss Detection

- F1
- Precision
- Recall

- **baseline1**: SGNS+OP+CD
- baseline2: Normalized Log-Transformed Frequency Difference
- baseline3: Grammatical Profiling
- baseline4: Minority class
- baseline5: Random baseline

- GlossReader (token-based system)
 - fine-tuned the XLM-R multilingual as part of a gloss-based Word Sense Disambiguation (WSD) system language model
- DeepMistake (token-based system)
 - WiC model, initially trained by fine-tuning the XLM-R model
- HSE (token-based system)
 - fine-tuning BERT, and then clustering using K-means

- GlossReader (token-based system)
- UAlberta (token-based and type-based system)
 - SGNS + XLM-R + APD
- Rombek (token-based system)
 - WSI task

- the winning system for phase 1 and 2 actually models the COMPARE score with APD
- for phase 2 it uses thresholding on the graded scores

LSCDiscovery: Discussion

- performance for **graded change** comparable to previous shared tasks
 - but obtained under harder conditions (Discovery)
 - $\rightarrow\,$ applicable to solve real-world historical semantics/lexicography problems
- performance for binary change lower, but still above baseline
 - more relevant to historical semantics/lexicography
 - \rightarrow future challenge
- both tasks dominated by token-based models
 - \rightarrow confirms tendency observed in RuShiftEval
- clustering methods amongst the best-performing systems for the first time
 - important, because current systems exploit correlations between change measures and do not model annotation procedure
 - $\rightarrow\,$ upper performance bound

LSCDiscovery: Thresholding

Frank D. Zamora-Reina LSCDiscovery in Spanish 23 / 24

LSCDiscovery

END

Frank D. Zamora-Reina LSCDiscovery in Spanish

≥
24 / 24

æ

< □ > <