

The DURel Annotation Tool

Using fine-tuned LLMs to discover non-recorded senses in multiple languages

October 16, 2024

Pauline Sander, Simon Hengchen, Wei Zhao, Xiaocheng Ma, Emma Sköldberg, Shafqat Virk and Dominik Schlechtweg

LLM-LEX Workshop 2024

UNIVERSITÉ DE GENÈVE

Introduction

- Goal: Reduce the workload when searching for new headword senses.
 - \hookrightarrow DURel Annotation Tool
 - automatic semantic proximity annotation
 - graph clustering and visualization
 - guide lexicographers in their work

Semantic Proximity Scale

4: Identical	Identity
3: Closely Related	↑ Context Variance
2: Distantly Related	Polysemy
1: Unrelated	['] Homonymy

Table 1: The DURel relatedness scale (Schlechtweg et al., 2018) on the left and its interpretation from Schlechtweg (2023, p. 33) on the right.

Word-in-Context Models

- produce contextualized embeddings
- trained on large amounts of data
- optimized on human-annotated semantic proximity judgments

XL-Lexeme (Cassotti et al., 2023)

- bi-encoder
- vectorizes the input sequences using a XLMR-based Siamese Network
- minimize the contrastive loss with cosine distance
 - \hookrightarrow running within the DURel Tool

Arm Example

Α	1824	and taking a knife from her pocket, she opened a vein
		in her little arm,
В	1842	And those who remained at home had been heavily
		taxed to pay for the arms , ammunition; 🛛 🛛 🗙
С	1860	and though he saw her within reach of his arm, yet
		the light of her eyes seemed as far off $\begin{tabular}{c} \begin{tabular}{c} \end{tabular}$
D	1953	overlooking an arm of the sea which, at low tide, was
		a black and stinking mud-flat
Е	1975	twelve miles of coastline lies in the southwest on the
		Gulf of Aqaba, an arm of the Red Sea.
F	1985	when the disembodied arm of the Statue of Liberty
		jets spectacularly out of the

Table 2: Sample of diachronic corpus.

- (A) [...] and taking a knife from her pocket, she opened a vein in her little arm, and dipping a feather in the blood, wrote something on a piece of white cloth, which was spread before her.
- (D) It stood behind a high brick wall, its back windows overlooking an arm of the sea which, at low tide, was a black and stinking mud-flat [...]

Automated Annotation of Semantic Proximity

Graph Representation

Figure 1: Word Usage Graph of English arm.

Clustering

Figure 2: Word Usage Graph of English *arm*. D = (3, 2, 1).

Application

Sense Discovery Task: Decide for a large set of unseen words which ones likely have gained new senses

(Sköldberg et al., 2024)

Sköldberg et al. (2024): Swedish

```
randomly select 281 headwords from SO
↓
sample 25 occurrences per headword from SVT corpus
↓
run through the DURel tool
↓
66 words (23%) predicted to have more than one cluster
↓
manual inspection
```

Our Experiments

Language	Dictionary	Corpus		
English	WordNet ¹	2023 1M Leipzig corpus ²		
English	OED ³	2015-2024 1M Leipzig corpus ⁴		
German	DWDS ⁵	2023 1M Leipzig corpus ⁶		

Table 3: Overview of languages, dictionaries and corpora covered.

¹WordNet (1998) ²Leipzig Corpora Collection (2023a) ³OED (2009) ⁴Leipzig Corpora Collection (2023a) ⁵DWDS (2024) ⁶Leipzig Corpora Collection (2023b)

Procedure: WordNet and DWDS

- 1. randomly sample headwords from the respective language's Wiktionary
- 2. look up the senses of all headwords in the dictionary
- 3. select one PoS if multiple apply
- 4. only keep monosemous headwords
- 5. sample 25 uses per headword from the **lemmatized** Leipzig corpus
- 6. run the DURel pipeline
- 7. manually inspect the results

Procedure: OED

- 1. sample headwords from OED updates⁷ (2015-2024)
- 2. look up the senses of all headwords in the dictionary

3. -

- 4. only keep monosemous headwords
- 5. sample 25 uses per headword from the **unlemmatized** Leipzig corpus
- 6. run the DURel pipeline
- 7. manually inspect the results

⁷The differences to the other procedure are highlighted in bold.

Results

	Sampled	>1 cluster		Named entity		New sense	
WordNet OED	100 103	40 44	40% 42.7%	15 20	37.5% 45.4%	4	10% 2.2%
German	108	46	42.6%	9	19.5%	8	17.3%

Table 4: Quantitative results for all experiments

Results: WordNet

- 40 words with more than one cluster
- 16 words with no meaningful sense distinction
- ▶ 5 words with faulty uses or clustering errors
- 15 words with named entities as second cluster
 - 'euphoria' the state of mind vs 'Euphoria' the TV show
 - 'Lisbon', Portugal vs 'Lisbon', Ohio (US)
- 4 words with new senses ⁸
 - 'water seeping' vs 'emotion seeping'
 - 'forest logging' vs 'computer logging'

⁸New in the context of the dictionary.

Example: 'seeping'

Figure 3: Usage clustering of 'to seep' in three clusters. From top to bottom: metaphorical use, PoS-errors, literal use.

Results: DWDS

- 46 words with more than one cluster
- 26 words with no meaningful sense distinction
- 3 words with faulty uses or clustering errors
- 9 words with named entities as second cluster
 - 'Alphabet' (the company vs 'alphabet')
- 8 words with new senses
 - Einlassung' ('statement' vs 'mounting')
 - 'Einmarsch' ('march-in' vs 'invasion')
 - 'Segnung' ('the act of blessing' vs 'the blessing itself')
 - 'Eck' ('street corner' vs 'corner of a goal')
 - 'Lebenswerk' ('life's work' vs 'charitable organization)

Results: OED

- 44 words with more than one cluster
- 17 words with no meaningful sense distinction
- 6 words with faulty uses or clustering errors
- 20 words with named entities as the second cluster
 'Marco Polo'
- 1 word with a new sense
 - 'broken heart' ('heart attack' vs metaphorical use)

Conclusion

- DURel pipeline is a viable tool to identify headwords that need to be updated
- given a large enough corpus, the method can be scaled to several thousand target headwords
- can be used to identify metaphorical/metonymic senses
- can be used to distinguish multiple named entities

Limitations

- small scale study
- PoS errors
- only tested on Germanic languages
- XL-Lexeme might have limitations for non-European languages
- relies on the availability of a written corpus

References I

- Berlin-Brandenburgischen Akademie der Wissenschaften (Ed.). (2024). DWDS Digitales Wörterbuch der deutschen Sprache. Das Wortauskunftssystem zur deutschen Sprache in Geschichte und Gegenwart. Retrieved from https://www.dwds.de
- Cassotti, P., Siciliani, L., de Gemmis, M., Semeraro, G., & Basile, P. (2023, July). XI-lexeme: Wic pretrained model for cross-lingual lexical semantic change. In *Proceedings of the 61th annual meeting of the association for computational linguistics*. Online: Association for Computational Linguistics.
- Fellbaum, C. (Ed.). (1998). Wordnet: An electronic lexical database.
- Leipzig Corpora Collection. (2023a). English news corpus based on material from 2023. Leipzig Corpora Collection. Retrieved from https://corpora.uni-leipzig.de?corpusId=eng_news_2023_1M
- Leipzig Corpora Collection. (2023b). German news corpus based on material from 2023. Leipzig Corpora Collection. Retrieved from https://corpora.uni-leipzig.de?corpusId=deu_news_2023_1M
- OED. (2009). Oxford English dictionary. Oxford University Press.
- Schlechtweg, D. (2023). Human and computational measurement of lexical semantic change (Doctoral dissertation, University of Stuttgart, Stuttgart, Germany). Retrieved from http://dx.doi.org/10.18419/opus-12833
- Schlechtweg, D., Schulte im Walde, S., & Eckmann, S. (2018). Diachronic Usage Relatedness (DURel): A framework for the annotation of lexical semantic change. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 169–174). New Orleans, Louisiana. Retrieved from https://www.aclweb.org/anthology/N18-2027/
- Sköldberg, E., Virk, S., Sander, P., Hengchen, S., & Schlechtweg, D. (2024). Revealing semantic variation in swedish using computational models of semantic proximity - results from lexicographical experiments. In *To appear*.