ABDN-NLP at CoMeDi Shared Task: Predicting the Aggregated Human Judgment via Weighted Few-Shot Prompting

Ying Xuan Loke¹, Dominik Schlechtweg², Wei Zhao¹

University of Aberdeen¹, University of Stuttgart²

Paper in a Nutshell

- Motivation: Human annotation in semantic proximity refers to how close or how far two usages of a word are in meaning is extremely subjective. It is also rather expensive and often results in a disagreement between the annotators.
- Aim: This paper tackles the challenge by using large language models (LLMs) to automatically predict the aggregated human judgment of semantic proximity. It further proposes a weighted few-shot prompting strategy that factors in class importance and distribution.
- Few-shot method outperforms both zero-shot and standard few-shot approaches on average in the CoMeDi 2025 subtask 1, tested across 7 languages. It shows improved alignment with human annotations in predicting aggregated judgments of semantic proximity.

Research Questions

- How can we automatically predict the aggregated human judgment of semantic proximity between word usages?
- Does weighted few-shot prompting help with class imbalance and improve predictions?

Contributions

- Outline the characteristics of human judgment of semantic proximity (class imbalance in difficulty/frequency).
- Introduce a new few-shot
 method that gives higher weight
 in the prompt to more difficult or
 more frequent classes.
- Discuss the results (e.g., GPT-4o-mini struggles with Norwegian and Chinese) and limitations of our approach.

Target Sentence pair Prompt Setups Zero-shot Standard Few Shot Weighted Few Shot (Frequency) Weighted Few Shot (Difficulty) API CALL LLM (GPT-40-mini) Closely related 3.0 Closely related 4.0 Identical

Results – Subtask 1

Setup	Russian	Swedish	Spanish	Norwegian	English	German	Chinese	Avg
zero-shot (n=0) standard few-shot (n=20) weighted few-shot (frequency, n=20) weighted few-shot (difficulty, n=20)	0.504 0.423 0.478 0.512	0.351 0.441 0.509 0.389	0.491 0.587 0.569 0.543	0.207 0.197 0.431 0.183	0.610 0.626 0.625 0.600	0.529 0.675 0.673 0.690	0.026 -0.127 0.209 -0.056	0.388 0.403 0.499 0.408
deep-change (Kuklin and Arefyev, 2025) comedi-baseline (Schlechtweg et al., 2025)	0.623 0.112	0.675 0.018	0.748 0.175	0.668 0.124	0.732 0.102	0.723 0.274	0.424 0.059	0.656 0.123

Limitations

- When the proportion of classes differs considerably between the test set on the one hand and training and development data on the other, the weighted strategy is likely to lose a part of its effectiveness.
- Our approach is based on a single LLM, which is not representative of the broader LLM community. Therefore, our findings may differ when other LLMs are applied.

Paper link

Github link

