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Introduction

Ï Gold data is required for training and testing of models
Ï Common approach: Adjudicate multiple annotations into

single gold label
Ï Problem: This discards valuable information
Ï Aim: Predict and analyze noise and semantic proximity

disagreement
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Example of Disagreement

(1) ...and taking a knife from her pocket, she opened a vein in her
little arm.

(2) ...It stood behind a high brick wall, its back windows
overlooking an arm of the sea ....

Ï Sample judgments: [2,3,2]; median: 2; mean disagreement:
0.67; noise label: 0
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DURel Annotation Scale

x
4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated
- - - - - - - -
0: Cannot Decide

Table 1: The DURel relatedness scale (Schlechtweg et al., 2018).
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Example of Noise

(1) ...and taking a knife from her pocket, she opened a vein in her
little arm.

(3) ...the com pany create a new arm
Ï Sample judgments: [1,0,0]; noise label: 1
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Task

Ï Given the pair of word usages:
Ï OGWiC: predict median semantic proximity label

M(J)=median(J)

Ï DisWiC: predict the mean disagreement

D(J)= 1
|J |

∑
(j1,j2)∈J

|j1 − j2|,

Ï NoiseWiC: predict noise

N(J)=


1, if (# non-zero <# zero)
NaN, if (# non-zero≥# zero)and(# zero> 0)
0, otherwise
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Data

Ï For all our tasks, we make use of publicly available ordinal
WiC datasets from the CoMeDi shared task (Schlechtweg,
Choppa, Zhao, & Roth, 2025)

Ï Datasets are highly skewed having class imbalance
Ï It is a multi-lingual dataset
Ï For NoiseWic, we employ a sampling strategy to downsample

the majority class to match the size of the minority class
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Model Architecture
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Models

Ï Contextual embedders:
Ï XL-Lexeme: An extension of S-BERT model pre-trained on

WiC datasets
Ï XLM-R (Baseline): An extension of RoBERTa using

self-supervised training techniques to achieve state-of-the-art
performance in cross-lingual understanding
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Models

Ï Heads:
Ï OGWiC: Cosine+Threshold (CosTH), MLP, Linear Regression
Ï DisWiC: MLP, Linear Regression
Ï NoiseWiC: Logistic Regression
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Baselines

Ï Majority Baseline:
Ï Used for the NoiseWic task
Ï Provides a minimum performance threshold that a model

should exceed
Ï Feature Baseline:

Ï For DisWic, feature vectors with character length and
non-alpha character ratio

Ï Uses MLP to predict disagreement labels
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Evaluation

Ï OGWiC: Krippendorff’s α
Ï DisWic: Spearman’s ρ
Ï NoiseWic: Accuracy and Krippendorff’s α



15

Upperbound Metric

Ï Represents the maximum potential performance of a model on
a specific task

Ï OGWiC:
Ï Compute α iteratively across annotators by excluding one,

weighted by their annotation contribution
Ï DisWiC:

Ï Compute ρ iteratively comparing excluded annotator pairs with
remaining annotators

Ï Requires a minimum of four annotators for analysis
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Experiments

Ï For each of the subtasks, the models are fit on the training
data in two ways:

Ï Per language i.e, hyperparameters or thresholds are learned
per language

Ï All Data i.e, on the entire training data available
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Experiments

Ï For each of the models in OGWiC and DisWic:
Ï We fit models with best parameters by searching over a

defined parameter grid
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Results-OGWiC

Model Setting AVG ZH EN DE NO RU ES SV

Upperbound All .95 1. .97 .88 .94 .96 .96 .96

XL-Lexeme + CosTH Lang .58 .38 .65 .72 .51 .55 .65 .60

XL-Lexeme + LR All .16 .04 .26 .15 .06 .15 .26 .18
Lang .09 .06 .04 .15 .03 .22 .22 -.07

XL-Lexeme + MLP All .42 .35 .49 .39 .37 .44 .51 .40
Lang .28 .20 .36 .36 .23 .32 .34 .13

XLM-R + CosTH Lang .12 .06 .10 .27 .12 .11 .17 .02
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Results-DisWiC

Model Setting AVG ZH EN DE NO RU ES SV

Upperbound All .18 .07 .04 .22 .08 .48

XL-Lexeme+ LR All .10 .30 .02 .03 .06 .07 .05 .18
Lang .09 .06 .04 .15 .03 .22 .22 -.07

XL-Lexeme+ MLP All .15 .45 .07 .07 .10 .13 .08 .16
Lang .16 .48 .04 .11 .25 .04 .06 .16

XLM-R + LR All .11 .38 .06 .09 .07 .04 .07 .08
Lang .05 .10 .01 .13 .04 .11 .05 -.11

Feature Baseline All -.00 -.00 -.00 .00 -.03 -.01 -.01 .02
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Results-NoiseWiC

Metric Model AVG EN DE NO ES SV

Accuracy XL-Lex. +Logistic Reg .58 .59 .63 .58 .48 .63

Accuracy XLM-R +Logistic Reg .59 .59 .65 .47 .60 .63

Krippendorff XL-Lex.+Logistic Reg .15 .19 .27 .15 -.08 .26

Krippendorff XLM-R+Logistic Reg .14 .17 .30 -.21 .20 .25

Accuracy Majority Baseline .50 .50 .50 .50 .50 .50
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Exemplary Disagreement Pattern

(1) Willoughby’s as the family possess and will submit for
examination, carefully searched, in the hope that some record
may be found in his hand-writing.

(2) For the record, your information is inaccurate on Governor
Rockefeller’s visit on Sept. 21.
Ï Judgments: [3, 4, 2]
Ï Mean Disagreement Label: 1.333
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Exemplary Noise Pattern

(3) The public, gene- /z/ rally, remained indifferent,
notwithstanding the marvellous things which were related of
the terri tory which had been ceded to the company.

(4) Once or twice I have known him touch nerves that go close to
the heart; but gene rally, he is no master of the feelings.
Ï Judgments: [1, 0, 0, 0, 4]
Ï Noise Label: 1
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Factors Influencing Annotator Disagreement

Ï Grammatical errors and misspelled words
Ï Lack of contextual information
Ï Complex language misinterpretation
Ï Annotator uncertainty raising reliability concerns
Ï Historical contexts, scientifically specific concepts
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Conclusion I

Ï Task Formulation and Model Performance:
Ï Introduced OGWiC, DisWiC, and NoiseWiC tasks for semantic

proximity and disagreement analysis
Ï XL-Lexeme achieved highest Krippendorff’s α scores of 0.67

(dev) and 0.58 (test)
Ï Consistently outperformed baseline XLM-R, especially in

language-specific configurations
Ï In DisWiC, ZH and NO perform better
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Conclusion II

Ï Addressed class imbalance in NoiseWiC through a
downsampling strategy

Ï Demonstrated the importance of per-language hyperparameter
tuning

Ï Research can be expanded by looking into main factors
affecting the disagreement
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