

Supervised Semantic Proximity, Noise and Disagreement Detection

January 17, 2025

Tejaswi Choppa

Institute for Natural Language Processing, University of Stuttgart

Introduction

- Gold data is required for training and testing of models
- Common approach: Adjudicate multiple annotations into single gold label
- Problem: This discards valuable information
- Aim: Predict and analyze noise and semantic proximity disagreement

Example of Disagreement

- (1) ...and taking a knife from her pocket, she opened a vein in her little **arm**.
- (2) ... It stood behind a high brick wall, its back windows overlooking an **arm** of the sea
 - Sample judgments: [2,3,2]; median: 2; mean disagreement: 0.67; noise label: 0

DURel Annotation Scale

- 4: Identical
- 3: Closely Related 2: Distantly Related
 - 1: Unrelated

0: Cannot Decide

Table 1: The DURel relatedness scale (Schlechtweg et al., 2018).

Example of Noise

- (1) ...and taking a knife from her pocket, she opened a vein in her little **arm**.
- (3) ... the com pany create a new **arm**
 - Sample judgments: [1,0,0]; noise label: 1

Table of Contents

- 1. Task
- 2. Data
- 3. Models
- 4. Experiments
- 5. Results
- 6. Conclusion

Task

Given the pair of word usages:

OGWiC: predict median semantic proximity label

$$M(J) = median(J)$$

DisWiC: predict the mean disagreement

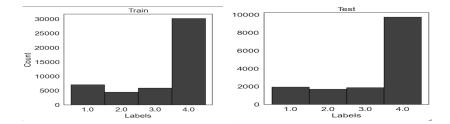
$$D(J) = \frac{1}{|J|} \sum_{(j_1, j_2) \in J} |j_1 - j_2|,$$

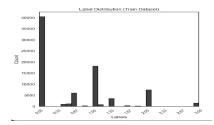
NoiseWiC: predict noise

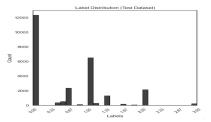
$$N(J) = \begin{cases} 1, & \text{if } (\# \text{ non-zero } < \# \text{ zero}) \\ \text{NaN,} & \text{if } (\# \text{ non-zero} \ge \# \text{ zero}) \text{and}(\# \text{ zero} > 0) \\ 0, & \text{otherwise} \end{cases}$$

Data

- For all our tasks, we make use of publicly available ordinal WiC datasets from the CoMeDi shared task (Schlechtweg, Choppa, Zhao, & Roth, 2025)
- Datasets are highly skewed having class imbalance
- It is a multi-lingual dataset
- For NoiseWic, we employ a sampling strategy to downsample the majority class to match the size of the minority class







Model Architecture

Models

- Contextual embedders:
 - XL-Lexeme: An extension of S-BERT model pre-trained on WiC datasets
 - XLM-R (Baseline): An extension of RoBERTa using self-supervised training techniques to achieve state-of-the-art performance in cross-lingual understanding

Models

- Heads:
 - ► OGWiC: Cosine+Threshold (CosTH), MLP, Linear Regression
 - DisWiC: MLP, Linear Regression
 - NoiseWiC: Logistic Regression

Baselines

Majority Baseline:

- Used for the NoiseWic task
- Provides a minimum performance threshold that a model should exceed
- Feature Baseline:
 - For DisWic, feature vectors with character length and non-alpha character ratio
 - Uses MLP to predict disagreement labels

Evaluation

- **OGWiC**: Krippendorff's *α*
- DisWic: Spearman's ρ
- **NoiseWic**: Accuracy and Krippendorff's *α*

Upperbound Metric

- Represents the maximum potential performance of a model on a specific task
- OGWiC:
 - Compute α iteratively across annotators by excluding one, weighted by their annotation contribution
- ► DisWiC:
 - Compute ρ iteratively comparing excluded annotator pairs with remaining annotators
 - Requires a minimum of four annotators for analysis

Experiments

- For each of the subtasks, the models are fit on the training data in two ways:
 - Per language i.e, hyperparameters or thresholds are learned per language
 - All Data i.e, on the entire training data available

Experiments

For each of the models in **OGWiC** and **DisWic**:

We fit models with best parameters by searching over a defined parameter grid

Results-OGWiC

Model	Setting	AVG	ΖH	EN	DE	NO	RU	ES	sv
Upperbound	All	.95	1.	.97	.88	.94	.96	.96	.96
XL-Lexeme + CosTH	Lang	.58	.38	.65	.72	.51	.55	.65	.60
XL-Lexeme + LR	All Lang	-	-	-	-	.06 .03	-	-	-
$XL ext{-Lexeme} + MLP$	All Lang					.37 .23			
XLM-R+CosTH	Lang	.12	.06	.10	.27	.12	.11	.17	.02

${\sf Results-DisWiC}$

Model	Setting	AVG	ZH	ΕN	DE	NO	RU	ES	sv
Upperbound	All	.18		.07	.04		.22	.08	.48
XL-Lexeme+ LR	All Lang	.10 .09	.30 .06		.03 .15			.05 .22	
XL-Lexeme+ MLP	All Lang					•		.08 .06	
XLM-R + LR	All Lang	.11 .05	.38 .10		.09 .13	.07 .04	.04 .11	.07 .05	.08 11
Feature Baseline	All	00	00	00	.00	03	01	01	.02

${\sf Results}{\text{-}{\sf NoiseWiC}}$

Metric	Model	AVG	EN	DE	NO	ES	sv
Accuracy	XL-Lex. +Logistic Reg	.58	.59	.63	.58	.48	.63
Accuracy	$XLM\text{-}R + Logistic \ Reg$.59	.59	.65	.47	.60	.63
Krippendorff	XL-Lex.+Logistic Reg	.15	.19	.27	.15	08	.26
Krippendorff	$XLM\text{-}R\text{+}Logistic\ Reg$.14	.17	.30	21	.20	.25
Accuracy	Majority Baseline	.50	.50	.50	.50	.50	.50

Exemplary Disagreement Pattern

- (1) Willoughby's as the family possess and will submit for examination, carefully searched, in the hope that some record may be found in his hand-writing.
- (2) For the **record**, your information is inaccurate on Governor Rockefeller's visit on Sept. 21.
 - Judgments: [3, 4, 2]
 - Mean Disagreement Label: 1.333

Exemplary Noise Pattern

- (3) The public, gene- /z/ rally, remained indifferent, notwithstanding the marvellous things which were related of the terri tory which had been ceded to the company.
- (4) Once or twice I have known him touch nerves that go close to the heart; but gene **rally**, he is no master of the feelings.
 - Judgments: [1, 0, 0, 0, 4]
 - Noise Label: 1

Factors Influencing Annotator Disagreement

- Grammatical errors and misspelled words
- Lack of contextual information
- Complex language misinterpretation
- Annotator uncertainty raising reliability concerns
- Historical contexts, scientifically specific concepts

Conclusion I

- Task Formulation and Model Performance:
 - Introduced OGWiC, DisWiC, and NoiseWiC tasks for semantic proximity and disagreement analysis
 - XL-Lexeme achieved highest Krippendorff's α scores of 0.67 (dev) and 0.58 (test)
 - Consistently outperformed baseline XLM-R, especially in language-specific configurations
 - In DisWiC, ZH and NO perform better

Conclusion II

- Addressed class imbalance in NoiseWiC through a downsampling strategy
- Demonstrated the importance of per-language hyperparameter tuning
- Research can be expanded by looking into main factors affecting the disagreement

References I

- Schlechtweg, D., Choppa, T., Zhao, W., & Roth, M. (2025). The CoMeDi shared task: Median judgment classification & mean disagreement ranking with ordinal word-in-context judgments. In Proceedings of the 1st workshop on context and meaning-navigating disagreements in nlp annotations. Abu Dhabi, UAE.
- Schlechtweg, D., Schulte im Walde, S., & Eckmann, S. (2018). Diachronic Usage Relatedness (DURel): A framework for the annotation of lexical semantic change. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 169–174). New Orleans, Louisiana. Retrieved from https://www.aclweb.org/anthology/N18-2027/