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Introduction

Ï near-human performance in several semantic NLP tasks (A. Wang et al., 2019)

Ï e.g. WiC (Pilehvar & Camacho-Collados, 2019)

Ï asking if the same word in two contexts has the same meaning
Ï binary classification
Ï elegant simplification of classical WSD
Ï state-of-art model has obtained near-human performance, 77.9% vs. 80%

(Z. Wang et al., 2021)
Ï avoids need for sense glosses
Ï inadequate simplification



3

Ordinal Graded Word-in-Context Classification

Ï more theory-adequate formulation: GWiC (Armendariz et al., 2020)

Ï asking to provide graded WiC predictions
Ï did not require to reproduce human annotations
Ï ranking task
Ï can be fulfilled by predictions on an arbitrary scale
Ï exactly reproducing human annotations has advantages such as providing linguistic

interpretations
Ï Ordinal Graded Word-in-Context Classification (OGWiC)

Ï asking participants to exactly reproduce instance labels instead of just inferring
their relative order
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Disagreement in Word-in-Context Ranking

Ï WiC datasets annotated on ordinal scales show considerable disagreement
(cf. Schlechtweg et al., 2024)

Ï traditional aggregation leads to information loss
Ï modeling disagreement is important for realistic scenarios
Ï predict on items where high disagreement is expected
Ï can help to detect or filter highly complicated samples
Ï recent research uses alternative aggregation techniques

(e.g. Leonardelli et al., 2023; Uma et al., 2022)

Ï Disagreement in Word-in-Context Ranking (DisWiC)
Ï asking to predict the amount of disagreement
Ï differs from previous tasks by making disagreement the explicit ranking aim
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Shared Task

Ï both tasks introduced in CoMeDi shared task (Schlechtweg et al., 2025)

Ï data, starting kits, codalab, results, papers:
https://comedinlp.github.io/

https://comedinlp.github.io/
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Task Definitions

(1) ...and taking a knife from her pocket, she opened a vein in her little arm.
(2) ...and though he saw her within reach of his arm, yet the light of her eyes seemed

as far off.
Ï Sample judgments: [4,4]; median: 4; mean pairwise difference: 0.0

(1) ...and taking a knife from her pocket, she opened a vein in her little arm.
(3) It stood behind a high brick wall, its back windows overlooking an arm of the sea

which, at low tide, was a black and stinking mud-flat.
Ï Sample judgments: [2,3,2]; median: 2; mean pairwise difference: 0.667

Ï OGWiC: For each usage pair, predict the median of annotator judgments
Ï DisWiC: For each usage pair, predict the mean of pairwise absolute judgment

differences between annotator judgments
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Annotation Scale

x
4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

x
Identity
Context Variance
Polysemy
Homonymy

Table 1: The DURel relatedness scale (Schlechtweg et al., 2018) on the left and its
interpretation from Schlechtweg (2023, p. 33) on the right.
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Data

Ï use publicly available ordinal WiC datasets from multiple languages:
https://www.ims.uni-stuttgart.de/data/wugs

Ï provide large number of judgments for word usage pairs on the DURel scale
Ï have so far not been used primarily for WiC-like tasks
Ï augment with roughly 33k unpublished instances
Ï ensure data quality through overall agreement and cleaning

https://www.ims.uni-stuttgart.de/data/wugs
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Datasets

Dataset LG Reference JUD VER KRI SPR

ChiWUG ZH Chen et al. (2023) 61k 1.0.0 .60 .69

DWUG EN Schlechtweg et al. (2021) 69K 3.0.0 .63 .55
DWUG Res. EN Schlechtweg et al. (2024) 7K 1.0.0 .56 .59

DWUG DE Schlechtweg et al. (2021) 63K 3.0.0 .67 .61
DWUG Res. DE Schlechtweg et al. (2024) 10K 1.0.0 .59 .7
DiscoWUG DE Kurtyigit et al. (2021) 28K 2.0.0 .59 .57
RefWUG DE Schlechtweg (2023) 4k 1.1.0 .67 .7
DURel DE Schlechtweg et al. (2018) 6k 3.0.0 .54 .59
SURel DE Hätty et al. (2019) 5k 3.0.0 .83 .84

NorDiaChange NO Kutuzov et al. (2022) 19k 1.0.0 .71 .74

RuSemShift RU Rodina and Kutuzov (2020) 8k 1.0.0 .52 .53
RuShiftEval RU Kutuzov and Pivovarova (2021) 30k 1.0.0 .56 .55
RuDSI RU Aksenova et al. (2022) 6k 1.0.0 .41 .56

DWUG ES Zamora-Reina et al. (2022) 62k 4.0.1 .53 .57

DWUG SV Schlechtweg et al. (2021) 55K 3.0.0 .67 .62
DWUG Res. SV Schlechtweg et al. (2024) 16K 1.0.0 .56 .65

Table 2: Datasets used for our task. All are annotated on the DURel scale.
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Cleaning and Aggregation

1. pre-cleaning
2. cleaning

Ï exclude instances with less than two judgments
Ï exclude instances with “Cannot decide” judgments, strong disagreement and

non-integer median (OGWiC)
Ï ignore “Cannot decide” judgments (DisWiC)

3. aggregation
4. split

Ï per language into train/test/dev (70/20/10%)
Ï at target words (lexical split)
Ï no overlap in target words and uses
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Data statistics

Task # Instances # Uses # Lemmas Split

OGWiC
48K 55K 520 Train
8K 8K 77 Dev
15K 16K 152 Test

DisWiC
82K 55K 521 Train
13K 8K 77 Dev
26K 16K 152 Test

Table 3: Data statistics after cleaning and aggregation per split and and over all languages
combined.
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Data Distribution (OGWiC)

Figure 1: Label distribution for OGWiC task for all languages combined.
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Data Distribution (DisWiC)

Figure 2: Label distribution for DisWiC task for all languages combined.
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Models (Baselines)

Ï baseline models: (cf. Choppa et al., 2025)

Ï Baseline 1: XLM-R + CosTH
Ï Baseline 2: XL-Lexeme + CosTH
Ï Baseline 3: XLM-R + LR
Ï Baseline 4: XL-Lexeme + MLP
Ï Upper bound (OGWiC)

Ï structure:
1. vectorize usages with contextualized encoder
2. concatenate vectors
3. classify with threshold on cosine similarity/linear regression/multi-layer perceptron

Ï Baselines 2 and 3 were published in development phase
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Models (Participants)

Ï 5 teams participated
Ï Deep-change (Kuklin & Arefyev, 2025)
Ï GRASP (Alfter & Appelgren, 2025)
Ï MMLabUIT (Le & Van, 2025)
Ï JuniperLiu (Liu et al., 2025)
Ï FuocChu_VIP123 (Chu, 2025)

Ï often (but not always) similar to baseline models
Ï three unofficial submissions (Choppa et al., 2025; Loke et al., 2025; Sarumi et al., 2025)
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Evaluation

Ï OGWiC: Krippendorff’s α (ordinal version) (Krippendorff, 2018)

Ï penalizes stronger deviations from the gold label more heavily
Ï controls for expected disagreement
Ï is recommended for ordinal classification (Sakai, 2021)

Ï DisWiC: Spearman’s ρ (Spearman, 1904)

Ï measures correspondence of rankings according to amount of disagreement

Ï in development phase, the starting kits, training and development data released
Ï in evaluation phase, public test instances were published and participants were

allowed to make 3 submissions
Ï leaderboard on Codalab was kept hidden during evaluation phase
Ï hidden gold labels were published during post-evaluation phase
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Timeline

Task Development Phase Evaluation Phase

OGWiC August 23–September 14 October 14–21
DisWiC September 15–October 13 October 21–27

Table 4: Shared task timeline.
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Results

Task Team AV -ES ZH EN DE NO RU ES SV

O
G

W
iC

Upper bound .95 .95 1. .97 .88 .94 .96 .96 .95
deep-change .66 .64 .42 .73 .72 .67 .62 .75 .68
Baseline 2 .58 .57 .38 .65 .73 .52 .55 .66 .60
GRASP .56 .54 .32 .56 .66 .59 .49 .64 .65
MMLabUIT .52 .51 .36 .57 .67 .44 .42 .60 .61
JuniperLiu .27 .26 .14 .51 .49 .08 .13 .33 .22
Baseline 1 .12 .12 .06 .10 .27 .12 .11 .18 .02

Table 5: Top results of OGWiC evaluation phase. ‘AV’ = Average over languages; ‘-ES’ =
Average over languages excluding Spanish.
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Results

Task Team AV -ES ZH EN DE NO RU ES SV

D
is
W

iC

deep-change .23 .23 .30 .08 .20 .29 .18 .19 .35
GRASP .22 .23 .54 .04 .11 .27 .17 .12 .30
Baseline 4 .16 .17 .49 .06 .09 .24 .12 .08 .08
FuocChu. .12 .14 .36 .02 .10 .16 .05 .01 .17
Baseline 3 .12 .12 .39 .06 .09 .08 .05 .08 .08
JuniperLiu .08 .09 .36 .04 .02 -.04 .07 .04 .09
sunfz1 .07 .07 .30 .05 -.00 -.07 .07 .04 .09

Table 6: Top results of DisWiC evaluation phase. ‘AV’ = Average over languages; ‘-ES’ =
Average over languages excluding Spanish; ‘FuocChu.’ = FuocChu_VIP123.
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Conclusion

Ï introduced two new tasks based on ordinal Word-in-Context annotations between
word usages

Ï OGWiC
Ï DisWiC

Ï OGWiC solved with rather high performance
Ï DisWiC remains a challenge

Ï on some languages performance is exceptionally high

Ï both tasks dominated by same teams employing a Word-in-Context model
optimized on independent binary Word-in-Context data

Ï dominant approach to solve OGWiC was thresholding of graded similarity
predictions
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Future Work

Ï solve the two tasks with different data splitting conditions
Ï tie the published test data to individual annotators
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Limitations

Ï influence of annotator number on mean disagreement values
Ï control number of annotations per instance or provide at test time
Ï explore other disagreement measures

Ï narrowness of training, development and test data in terms of target words
Ï avoid lexical split

Ï Krippendorff’s α estimates the expected label distribution from both model and
gold labels

Ï explore modifications of Krippendorff’s α estimating the expected label distribution
solely from the gold data

Ï performance upper bound influenced by random agreement
Ï report results for historical and modern language instances separately

Ï ignorance of diachronic dataset component
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