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Introduction

Ï Lexical Semantic Change Detection
Ï goal: automate the analysis of changes in word meanings in text over time

(1) Mäuse und Ratten sind selbstverständlich mit den europäischen Schiffen auch hierher
gekommen.
‘Of course, mice and rats also came here with the European ships.’

(2) Deshalb eignet sich die Maus auch für verschiedene Betriebssysteme neben Windows
und macOS.
‘The mouse is therefore also suitable for various operating systems in addition to
Windows and macOS.’
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Two measurement paradigms

1. Word Usage Graphs (Schlechtweg, 2023)

Ï compares corpus to corpus
Ï builds on Word Sense Induction (Schütze, 1998)

2. Unrecorded Sense Detection (Erk, 2006; Fedorova et al., 2024)

Ï compares corpus to dictionary
Ï builds on Word Sense Disambiguation (Weaver, 1949/1955)
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Word Usage Graphs
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Human Measurement of Lexical Semantic Change

A 1824 and taking a knife from her pocket, she opened a vein
in her little arm,

B 1842 And those who remained at home had been heavily
taxed to pay for the arms, ammunition; Û

C 1860 and though he saw her within reach of his arm, yet
the light of her eyes seemed as far off
. . .

D 1953 overlooking an arm of the sea which, at low tide, was
a black and stinking mud-flat

E 1975 twelve miles of coastline lies in the southwest on the
Gulf of Aqaba, an arm of the Red Sea.

F 1985 when the disembodied arm of the Statue of Liberty
jets spectacularly out of the

Table 1: Sample of diachronic corpus.
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Word Use Pairs

(A) [. . . ] and taking a knife from her pocket, she opened a vein in her little arm, and
dipping a feather in the blood, wrote something on a piece of white cloth, which
was spread before her.

(D) It stood behind a high brick wall, its back windows overlooking an arm of the sea
which, at low tide, was a black and stinking mud-flat [. . . ]
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Semantic Proximity Scale

x
4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

Table 2: DURel relatedness scale.
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Graph representation

Figure 1: Word Usage Graph of English arm.
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Clustering

Figure 2: Word Usage Graph of English arm. D = (3,2,1).
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Lexical Semantic Change

t1, D1 = (2,0,1) t2, D2 = (1,2,0)
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Change Scores

Ï binary change (loss and gain of senses)
Ï graded change (changes in sense probabilities)
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Evaluation Tasks

Task 1 Binary classification: for a set of target words, predict the binary
change score

Task 2 Ranking: rank a set of target words according to their graded change
score

(Schlechtweg et al., 2020)
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Example: Swedish ledning 1

Figure 4: WUG of Swedish ledning.

1Datasets available at https://www.ims.uni-stuttgart.de/data/wugs

https://www.ims.uni-stuttgart.de/data/wugs
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Example: Swedish ledning

Figure 5: WUGs of Swedish ledning : subgraphs for 1st time period G1 (left) and 2nd time
period G2 (right). D1 = (58,0,4,0), D2 = (52,14,5,1), B(w)= 1 and G (w)= 0.34.



16

Example: German Eintagsfliege

Figure 6: WUG of German Eintagsfliege.
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Example: German Eintagsfliege

Figure 7: WUG of German Eintagsfliege: subgraphs for 1st time period G1 (left) and 2nd time
period G2 (right). D1 = (12,45,0,1), D2 = (85,6,1,1), B(w)= 0 and G (w)= 0.66.
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Summary of Annotation Steps

1. semantic proximity labeling
2. clustering
3. change measurement
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Summary of Annotation Steps with Tasks

1. semantic proximity labeling ↔ Word-in-Context Task
2. clustering ↔ Word Sense Induction
3. change measurement ↔ Lexical Semantic Change Detection (including

previous tasks)
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Computational Measurement of Lexical Semantic Change

Ï Typical token-based model is composed by
1. semantic proximity model (e.g. similarity between contextualized embeddings)
2. clustering method (optional)
3. change measure
Ï model the human measurement process
Ï one vector per word use (BERT, ELMo)

Ï Typical type-based model is composed by
1. semantic representation per word (type vector)
2. alignment
3. measure
Ï do not model the human measurement process
Ï one average vector per word (Word2Vec, GloVe)
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Simple token-based Model

armD

armE

armA

armC
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Simple type-based Model

armt2

armt1

α
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SOTA Model Components

Ï SOTA Models used for the different levels:
1. semantic proximity: DeepMistake, XL-Lexeme, GlossReader

(Arefyev et al., 2021; Arefyev & Rachinskiy, 2021; Cassotti et al., 2023)
2. clustering: Agglomerative, Spectral, Correlation, Stochastic Blockmodel

(cf. Schlechtweg, Zamora-Reina, et al., 2024)
3. change measure: Cluster gain/loss, Thresholding, Jensen Shannon Distance,

Average Pairwise Distance (Kutuzov & Giulianelli, 2020; Lin, 1991)
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Semantic Proximity Models

Ï aka Word-in-Context models (Pilehvar & Camacho-Collados, 2019)

Ï estimate degree of semantic proximity/same-sense probability for two input texts
Ï training data example:

(A) [. . . ] and taking a knife from her pocket, she opened a vein in her little arm, and dipping a
feather in the blood, wrote something on a piece of white cloth, which was spread before
her.

(D) It stood behind a high brick wall, its back windows overlooking an arm of the sea which, at
low tide, was a black and stinking mud-flat [. . . ]
label: 0 (binary), 2 (ordinal)

Ï SOTA: DeepMistake, XL-Lexeme, GlossReader
(Arefyev et al., 2021; Arefyev & Rachinskiy, 2021; Cassotti et al., 2023)

Ï optimized on binary multilingual semantic proximity data
(Martelli et al., 2021; Pilehvar & Camacho-Collados, 2019; Raganato et al., 2020)

Ï have brought major performance improvements (Kutuzov & Pivovarova, 2021)

Ï can be mapped to ordinal labels (Schlechtweg et al., 2025)
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Semantic Proximity Models

Figure 8: S-BERT (Reimers & Gurevych, 2019) training architecture used for XL-Lexeme.



26

Word Sense Induction Models

Ï aka clustering
Ï wealth of algorithms available
Ï Agglomerative, Spectral, Correlation, Stochastic Blockmodel

(cf. Schlechtweg, Zamora-Reina, et al., 2024)

Ï default: Correlation Clustering (Bansal et al., 2004)

Ï straightforward because used for ground truth clustering
Ï additional advantages: finds number of clusters, intuitive
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Change Measures

Ï binary change:
Ï cluster gain/loss (cluster-based)
Ï thresholding graded predictions (Schlechtweg et al., 2020)

Ï graded change:
Ï Jensen Shannon Distance (cluster-based) (Lin, 1991)
Ï Average Pairwise Distance (Kutuzov & Giulianelli, 2020)

Ï cluster-based vs. summary-based
Ï exact models vs. not
Ï summary-based dominates for graded change
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SOTA Model for graded change: APD

armD

armE

armA

armC

α
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Results

Lang. Binary Model Graded Model

Chinese .73 XL-Lex.+APD
English .70 (.67/.75) BERT+HDBSCAN .89 XL-Lex.+APD
German .70 (.60/.82) SGNS+thres. .84 XL-Lex.+APD
Norwegian .76 XL-Lex.+PRT
Russian .86 XL-Lex.+APD
Swedish .64 (.47/1.0) XLM-R+K-means .81 XL-Lex.+APD
Spanish .72 (.62/.86) GlossR.+APD+thres. .74 GlossR.+APD

Table 3: SOTA performances on LSCD tasks (Cassotti et al., 2023; Periti & Tahmasebi, 2024a;
Rachinskiy & Arefyev, 2022; Schlechtweg et al., 2020; Zamora-Reina et al., 2022). Values give
F1 (P/R) for binary change and Spearman for graded change.
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Summary

Ï advantages:
Ï no need for sense definitions
Ï rather explicit annotation criteria

Ï disadvantages:
Ï questionable notion of semantic proximity
Ï quadratically increased annotation load (Schlechtweg, Cassotti, et al., 2024)
Ï need for clustering algorithm

Ï open questions:
Ï clustering on gold data
Ï cluster models & binary change (Graef, 2025)
Ï application (Sköldberg et al., 2024)
Ï multiple time periods (Periti & Tahmasebi, 2024b)
Ï types of change (Whaley, 2024)
Ï detect noisy usages (Choppa et al., 2025)
Ï error analysis
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Applications

Ï DURel tool: annotate, cluster and visualize WUGs with humans and computers2

(Schlechtweg, Virk, et al., 2024)

Ï detect strongly changing words in German historical corpora with efficient
type-based approaches (Kurtyigit et al., 2021)

Ï detect unrecorded senses in Swedish dictionary by comparing induced corpus
sense number to dictionary sense number (Sander et al., 2024; Sköldberg et al., 2024)

2https://durel.ims.uni-stuttgart.de/

https://durel.ims.uni-stuttgart.de/
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Clustering Word Usage Graphs

Ï WUGs need a clustering algorithm to infer senses
Ï default choice is Correlation Clustering (Schlechtweg et al., 2020)

Ï motivated by theory-driven interpretation of annotation scale (Blank, 1997)

Ï question: can we evaluate this choice and do better?
Ï builds on previous ideas (Erk et al., 2013; McCarthy et al., 2016)
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Graph representation

Figure 9: Word Usage Graph of English arm.
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Clustering

Figure 10: Word Usage Graph of English arm. D = (3,2,1).
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Problem

Ï given:
Ï G= (U,E,W), weighted, undirected graph
Ï nodes u ∈U represent word uses
Ï weights w ∈W represent the human-annotated semantic proximity of a pair of uses

(an edge) (u1,u2) ∈E
Ï task:

Ï cluster nodes u ∈U based on the edge weights such that uses with the same sense
are in the same cluster
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Data

Figure 11: Word Usage Graph of German zersetzen.
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Data

Figure 12: Word Usage Graph of German Abgesang.
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Data3

DWUG DE DWUG DE Sense

n 50 24
N/V/A 34/14/2 16/7/1

|U| ≤100+≤100 25+25
AN 8 3
|J| 1.7 2.9

KRI .67 .87
STYLE use-use use-sense

Table 4: Statistics for the latest version (V2.3.0) of DWUG DE and the DWUG DE Sense
(V1.0.0) dataset. n = no. of target words, N/V/A = no. of nouns/verbs/adjectives, |U| = no.
uses per word (t1+t2), AN = no. of annotators, |J| = avg. no. judgments per annotation
instance, KRI = Krippendorff’s α, STYLE = annotation style.

3Available at https://www.ims.uni-stuttgart.de/data/wugs

https://www.ims.uni-stuttgart.de/data/wugs
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Models
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Correlation Clustering (CC)

Ï w ∈W are shifted to obtain a set of positive and negative edges
Ï Let C :U 7→ L be some clustering on U

Ï φE ,C is the set of positive (high) edges across any of the clusters in clustering C

Ï ψE ,C the set of negative (low) edges within any of the clusters
Ï correlation clustering searches for a clustering C that minimizes the sum of

weighted cluster disagreements:

SWD(C )= ∑
e∈φE ,C

W (e)+ ∑
e∈ψE ,C

|W (e)| .

Ï main assumption:
Ï weights above the threshold indicate same sense, below the threshold they indicate

different sense
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Weighted Stochastic Block Model (WSBM)

Ï a generative probabilistic model for random graphs (Aicher et al., 2014; Peixoto, 2019)

Ï popular in biology, physics and social sciences
Ï can be seen as an explanation of the data
Ï measures uncertainty over cluster assignments and allows for model comparison
Ï models nodes as part of blocks (clusters)
Ï main assumption:

Ï nodes in the same block are stochastically equivalent, i.e., sampled from the same
distribution
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Inference of Block Structure

Ï we maximize the Bayesian posterior probability

P(b|A,x)= P(x |A,b)P(A|b)P(b)
P(A,x)

where b is the inferred block structure, A is the (unweighted) observed graph, and
x are the observed edge weights (Peixoto, 2017)

Ï approximation: multilevel agglomerative Markov chain Monte Carlo (Peixoto, 2014)
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Evaluation

Ï leave-one-out cross-validation
Ï Adjusted Rand Index (ARI) (Hubert & Arabie, 1985)

Ï accuracy on pairwise cluster agreements between nodes
Ï controlled against agreement by chance
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Results

method ARI t dwn tclps dist mrg dgr weight #folds

WSBM .76
- - False binomial True True - 20
- - 2.4 binomial True False - 2
- - False binomial True False - 1
- - 2.3 binomial True True - 1

CC .72

2.5 True 2.3 - - - - 18
2.4 True 2.4 - - - - 2
2.5 True 2.4 - - - - 1
2.6 False 2.3 - - - - 1
2.9 True 2.3 - - - - 1
2.6 True 2.3 - - - - 1

Table 5: The configurations of hyperparameters selected for each method in at least one CV
fold. The configuration selected for the majority of folds is in bold. “-” marks non-applicable
parameters for the respective method.
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Conclusion

Ï we inferred sense structure in WUGs exploiting patterns of semantic proximity
Ï the probabilistic model outperformed heuristic model
Ï has additional advantages:

Ï model selection allows principled inference of sense structure
Ï rigorous comparison to other probabilistic models (Duda & Hart, 1973; Hoff et al., 2002)
Ï inferred models can be used for simulation of realistic WUGs

Ï future work:
Ï what do model assumptions imply?
Ï reproducibility?
Ï compare different types of probabilistic models?
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Testing Cognitive Hypotheses in Word Usage Graphs

Ï Bayesian models of graphs allow to compare the plausibility of different models,
given the observed data

Ï can be seen as different explanations of the data
Ï models make different assumptions on blocks, semantic proximity and their

relations
Ï assumption: different cognitive organization of lexical information may imply

different block structures
Ï idea: by selecting the most plausible block model we can learn about the cognitive

organization of lexical information



47

Testing Cognitive Hypotheses in Word Usage Graphs

Ï some questions:
Ï do senses overlap? (Airoldi et al., 2008; Peixoto, 2015)
Ï is semantic proximity sampled from a latent (semantic) space?

(Erk et al., 2013; Hoff et al., 2002)
Ï does (one) semantic proximity exist?
Ï should annotators be modeled individually? (Peixoto, 2017)
Ï how to model ambiguity and disagreement? (Schlechtweg et al., 2025)
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Data

Figure 13: Word Usage Graph of German Abgesang.
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Appendix: Annotation Scale

x
4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

x
Identity
Context Variance
Polysemy
Homonymy

Table 6: The DURel relatedness scale (Schlechtweg et al., 2018) on the left and its
interpretation from Schlechtweg (2023, p. 33) on the right.


